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To

Akanksha





The philosopher should be a man willing to listen to every

suggestion, but determined to judge for himself. He should not be

biased by appearances; have no favorite hypothesis; be of no

school; and in doctrine have no master. He should not be a

respecter of persons, but of things. Truth should be his primary

object. If to these qualities be added industry, he may indeed

hope to walk within the veil of the temple of nature.

— Michael Faraday
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Preface

A
tomic physics is the mother of all physics. It is no exaggeration to
say that much of our understanding of physics in the 20th century

comes from understanding atoms, photons, and their interactions. Starting
with the discrete energy levels of atoms, which led to the birth of quantum
mechanics, to the measurement of the Lamb shift in hydrogen, which led
to the birth of quantum electrodynamics, atomic physics has played a key
role in the development of physics. Lasers, which have impacted modern
life in countless ways, are a manifestation of coherent radiation emitted by
atoms. The recent excitement in laser cooling and Bose–Einstein conden-
sation arises from exploiting atom–photon interactions. Frontier research
in quantum optics and quantum computation requires a thorough under-
standing of atomic physics. Five Nobel Prizes were awarded in this area
since 1995 alone, highlighting the relevance of atomic physics to modern
society.

Even though there are a few textbooks on this important subject, I de-
cided to write this book for several reasons. The first and foremost is that,
when students ask me to clarify atomic physics, there is no single book to
which I can refer them. I know all the information is there, but it is scat-
tered throughout various textbooks and trade books, many of which are
not available in college libraries. Essentially, I felt there was a real need for
a textbook on modern atomic physics —what has been done since 1980 or
so. The second reason is that, after looking at textbooks on various sub-
jects, I have come to realize that each author brings a unique perspective
to this book, different from what you will find in other textbooks on the
same subject. This is because the author is conditioned by his (or her)
experiences and education, which are by definition different from those of
others. Therefore each textbook is valuable, even if there are several of
them already available. The third reason is that when I took a similar
course from my PhD thesis advisor (Dave Pritchard) at Massachusetts In-
stitute of Technology (MIT) in 1991, he had prepared elaborate notes for
the course. Combined with the class notes that I took, they formed a valu-
able resource for students, and I felt it would be a criminal waste not to
make them available to a wider audience. In fact, I have used them exten-
sively in the Atomic Physics course that I have taught at Indian Institute of

xvii
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Science (IISc) since 1997, especially due to the lack of a comparable books
covering this topic. Much of the material in the initial chapters of this book
is therefore based heavily on those notes. Last, but certainly not least, I
have come to view a book as a legacy for students. What better joy for a
teacher than to think that some creation of his has the potential to impact
students, well beyond his limited domain in space and time.

I take this opportunity to express gratitude for the wonderful time I had
learning physics at MIT. The people and the place are incomparable. Com-
ing from an engineering background, I learned to think “physics” for the
first time. The intuitive way of thinking and speaking physics—the MIT
way—cannot be learned from courses. You imbibe it from the experience of
being there. Two people at MIT have greatly influenced my way of think-
ing. One, of course, is my thesis advisor Dave Pritchard. He took this
young engineer from India, and molded me into a physicist trained in pre-
cision measurements. He has taught me about things beyond just physics,
and influenced me as a person. The second person to influence me is Eric
Cornell, my co-graduate student when I began studying for my PhD. Ask
him to explain something, and he would do so starting from the very basics.
It was from him that I learned that if you understand the basics well, the
advanced stuff is a breeze. I also learned from him that everything we do
in the lab has a reason, including something as simple as twisting a pair
of signal-carrying wires to reduce noise. My two-year stint at AT&T Bell
Labs rounded off my education in a way that a post-doctoral position at a
university would not have.

Since joining the Physics Department at IISc in 1996, I have taught many
different courses in physics. I am grateful to the students in these courses
for the varied questions they have asked, questions that have helped me
formulate this book in the most pedagogical manner. I thank my past
and present graduate students, again for asking the right questions. Of
my current batch, I thank in particular the following: Dipankar Kaundilya
for urging me to write this book; Ketan Rathod for making such beauti-
ful figures (using Libre Office); Apurba Paul for help with pre-production
typesetting; and Sumanta Khan, Pushpander Kumar, Aaron Markowitz,
Lal Muanzuala, K. P. Nagarjun, Harish Ravishankar, Alok Singh, and Vi-
neet Bharti for the critical reading of the manuscript. I am grateful to
my assistant S. Raghuveer for help with the pre-production typing. I also
thank Donald Knuth (whom I have never met) for inventing TEX, which
has made typesetting this book such a pleasure. Finally, I thank my family
and friends for being supportive during this long (ad)venture.

Some points about the book itself. The contents have been chosen to give
enough preparation to make the latest research papers accessible to the
student. To facilitate its use as a textbook by students, each chapter has
several worked out problems, chosen to emphasize the concepts presented
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in the chapter. However, the USP of the book, in my opinion, are the
appendixes. The four appendixes cover some of the topics in the main
book, but are written in a way that avoids jargon. Many of them contain
historical notes and personal anecdotes. They should therefore be accessible
to a wider audience of non-atomic-physics students, and are intended to
convey the excitement of atomic physics to all readers.

Vasant Natarajan

Bangalore
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Chapter 1

Metrology

T
he science of measurement, called metrology, is indispensable to the
science of physics because the accuracy of measurement limits the ac-

curacy of understanding. In fact, the construction, inter-comparison, and
maintenance of a system of units is really an art, often dependent on the lat-
est advances in the art of physics—e.g. quantum Hall effect, laser cooling
and trapping, trapped-ion frequency standards, etc. As a result, metro-
logical precision typically marches forward a good fraction of an order of
magnitude per decade. Importantly, measurements of the same quantity
(e.g. the fine structure constant α) in different fields of physics (e.g. atomic
structure, QED , and solid state) provide one of the few cross-disciplinary
checks available in a world of increasing specialization. Precise null ex-
periments frequently rule out alternative theories, or set limits on present
ones. Examples include tests of local Lorentz invariance and the equivalence
principle, searches for atomic lines forbidden by the exclusion principle, and
searches for electric dipole moments in fundamental particles which indicate
violation of time-reversal symmetry.

A big payoff, often involving new physics, sometimes comes just from at-
tempts to achieve routine progress. In the past, activities like further split-
ting of the line and increased precision have led to the discoveries of fine
and hyperfine structure in hydrogen, anomalous Zeeman effect, and the
Lamb shift; trying to understand residual noise in a microwave antenna
has resulted in the discovery of the cosmic background radiation; etc. One
hopes that the future will bring similar surprises. Thus, we see that preci-
sion experiments especially involving fundamental constants or metrology
not only solidify the foundation of physical measurement and theories, but
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occasionally open new frontiers.

This chapter deals briefly with SI units (and its ancestor, the mks system);
systems of units which are more natural to a physicist; and then introduces
atomic units.
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A. Measurement systems

1. MKS units

Most of us were introduced in high school to the mks system—meter, kilo-
gram, and second. This simple designation emphasizes an important fact:
three dimensionally independent units are sufficient to span the space of
all physical quantities. The dimensions are respectively: L — length, M
— mass, and T — time. These three units suffice because when a new
physical quantity is discovered it always obeys an equation which permits
its definition in terms of m, k, and s. For example, consider the Coulomb
force between two charges q1 and q2 separated by a distance r

F = K
q1q2
r2

One possibility is to take K as being a dimensionless constant equal to 1,
and define the dimensions of charge in terms of the three basic dimensions
as

[Q]2 = [M ]1[L]3[T ]−2

In fact, dimensional analysis, i.e. finding the right combination of the
basic units, is quite useful because it can give a rough estimate of the value
of an unknown quantity, or tell us if some derived dependencies are correct.

One can argue that only two dimensions are necessary because Einstein’s
relativity teaches us the space and time are the same physical quantity, and
transform into each other depending on your state of motion—one man’s
space is another man’s time. The parameter that allows us to measure
space and time in the same units to enable such transformation is c—the
speed of light. In fact, it is more appropriate to call c as the relativity
parameter rather than the speed of light; it is called speed of light only
because E&M was the first relativistically covariant theory that was dis-
covered. If Einstein’s relativistic theory of gravity (general relativity) had
been discovered before Maxwell’s equations, then c would have been called
the speed of gravity! And space and time may be interchangeable, but
their character is different. Therefore, it is natural to keep both meter
and second as independent units, which is what is followed in all practical
measurement systems. But it is important to note that our faith in the
correctness of relativity leads to the fact that the current definition of the
meter is dependent on the definition of the second in such a way that the
speed of light is exactly equal to 299792458 m/s.
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2. SI units (and why Gaussian units are better)

The modern avatar of the mks system is the SI units system (abbreviated
from French: Le Système International d’Unités). All the details about the
system are available on their website: http://www.bipm.org/en/si/.

Briefly, the three basic units are defined as follows.∗ The second is defined
as 9192631770 periods of the 133Cs hyperfine oscillation in zero magnetic
field. This definition is so reliable and “democratic” that secondary stan-
dards (clocks) with 10−12 accuracy are commercially available. The meter
is defined as the distance light travels in 1/299792458 of a second, making
the speed of light a defined quantity, as mentioned earlier. As metrological
precision improves with time, it is the realization of the meter that will im-
prove without changing the value of c. The kilogram, which is the only unit
still defined in terms of an artifact, is the weight of a platinum-iridium cylin-
der kept in a clean ambient at the Bureau de Poids et Measures in Severes,
France. The dangers of mass change due to cleaning, contamination, han-
dling, or accident are so perilous that this cylinder has been compared with
the dozen secondary standards that reside in the various national measure-
ment laboratories only two times in the last century. Clearly one of the
major challenges for metrology is replacement of the artifact kilogram with
an atomic definition. This could be done analogously with the definition of
length by making Avogadro’s number a defined quantity; however, there is
currently no sufficiently accurate method of realizing this definition.

There are four more base units in the SI system—the ampere, kelvin, mole,
and the candela—for a total of seven. While three are sufficient (or more
than sufficient) to do physics, the other four reflect the current situation
that electrical quantities, atomic mass, temperature, and luminous intensity,
are regularly measured with respect to auxiliary standards at levels of ac-
curacy greater than what can be expressed in terms of the above three base
units. Thus measurements of Avogadro’s number, the Boltzmann constant,
or the mechanical equivalents of electrical units play a role in inter-relating
the base units of mole (defined as the number of atoms of 12C in 0.012 kg
of 12C), kelvin, or the new volt and ohm (defined in terms of Josephson
and quantized Hall effects, respectively). In fact, independent and accurate
measurement systems exist for other quantities such as X-ray wavelengths
(using diffraction from calcite or other standard crystals), but these other
measurement scales are not formally sanctified by the SI system.

While SI units are the world-wide accepted system for making real mea-
surements, they are not the best system for understanding the underly-
ing physics when compared with Gaussian or centimeter-gram-second (cgs)
units. Some examples will highlight this fact.

∗For a description of the evolution of standards, the reader is referred to the essay in
Appendix A, “Standards.”
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(i) The constant K appearing in the Coulomb force is not unity in SI
units, and the equation becomes

F =
1

4πε◦

q1q2
r2

where ε◦ is “the permittivity of free space.” Isn’t free space supposed
to be the absence of any matter? Then how can we talk about it
being polarizable, about having a permittivity. Gaussian units do not
complicate matters by using ε◦.

(ii) The Coulomb force directly leads to the potential

V =
1

4πε◦

q1q2
r

The physics is all contained in the fact that it is a 1/r potential; the
presence of ε◦ merely complicates the understanding. In Gaussian
units, the potential is just q1q2/r, or e

2/r in the hydrogen atom.

(iii) Electric and magnetic fields should have the same dimensions, which
is not the case in SI units. Maxwell’s equations tell us that the two
fields transform into one another. Consider a stationary charge in one
frame. There is thus a pure E field surrounding it. But viewed from
a moving frame, the charge appears as a current, and therefore has a
B field associated with it. The easiest way to see this is to say that
the 3 + 3 components of the E and B vector fields are actually the
6 components of the totally anti-symmetric Fμν tensor. But such a
viewpoint necessitates that E and B fields are measured in the same
units, just like space and time in any relativistically covariant theory.

To see that this is not true in SI units, consider that the Lorentz force
on a charged particle moving with a velocity �v is

�F = q
(
�E + �v × �B

)
SI

This shows that E has dimensions of vB. Whereas the same force
expressed in Gaussian units is

�F = q

(
�E +

�v

c
× �B

)
Gaussian

which shows that E and B have the same dimensions.

(iv) In many cases, the SI units may not be the best system for a physicist
to get a “feel” for some number. For example, B fields in the lab are
measured in gauss (G), using what is called a gaussmeter. But the
SI unit for this is tesla (T). The Bohr magneton is familiar to exper-
imentalists in megahertz per gauss (MHz/G), whereas the correct SI
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unit is hertz per tesla (Hz/T). X-ray wavelengths are more familiar in
angstrom units rather than nanometers. Electric fields are known in
V/cm and not V/m.

The above examples show that while the functional dependencies are the
same in both SI and Gaussian systems, the expressions are less transparent
in the SI system. Since the idea of this book is to show the underlying
physics through dependencies on various parameters, expressions will be
given in Gaussian, but the values in SI. For instance, it is important to note
that the Bohr radius of the hydrogen atom depends on atomic parameters as
�
2/me2 and its value is about 0.5 Å; it is immaterial that the SI expression

has 4πε◦ in it.
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B. Universal units and fundamental constants

The sizes of the meter, kilogram, and second were originally selected for con-
venience. They bear no relationship to things which most physicists would
regard as universal or fundamental. In fact, most of the 42 fundamental
constants listed in the CODATA adjustment are neither fundamental nor
universal. We assert that there are only three truly universal constants:

c — the speed of light

� — the quantum of action

G — the gravitational constant

These quantities involve relativity, the quantum, and gravitation. Universal
units are defined by setting c, �, and G all equal to 1. By taking suitable
combinations of these fundamental constants, this defines units for M , L,
and T . Together they set what is called the Planck scale—the scale at
which relativistic quantum gravity effects are expected to become signifi-
cant. In SI units, the Planck mass is 5.4 × 10−8 kg, the Planck length is
4× 10−35 m, and the Planck time is 1.3× 10−43 s.

Next, we come to atomic constants, whose magnitude is determined by the
size of the quantized matter which we find all around us. Clearly the most
fundamental of these is

e — the quantum of charge

because it is the same (except for the sign) for all particles. Even though
the existence of quantized charge seems independent of the physics which
underlies the construction of universal units, this is probably not the case
because charge does not have independent units. In fact, e appears in the
dimensionless quantity

α =
e2

�c
= (137.035 999 074 . . .)−1

which is called the Fine structure constant, and is (I think) the only fun-
damental constant truly worthy of that name. When we really understand
E&M, quantum mechanics, and the origins of quantized matter, we should
be able predict it. The fact that we have to measure it is a sign of our ig-
norance, but the good agreement of the many seemingly independent ways
of measuring it shows that we are beginning to understand some things.

Other atomic constants like masses (me, mp, mn, . . . ) and magnetic mo-
ments (μe, μp, μn, . . . ) seem to be rather arbitrary at our current level
of physical knowledge, except that certain relationships are given by QED
(μe = gse�/2mec, with gs a little more than 2) and the quark model of the
nucleons.
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C. Atomic units

The system of atomic units is defined according to the scale of quantities
in a typical atom, usually hydrogen. It is obtained by setting � = m =
e = 1, where m is the electron mass. Units for other physical quantities
are formed by dimensionally suitable combinations of these units. In this
book, expressions will be given in atomic units to facilitate interpretation;
numerical evaluations should be done in SI units. In atomic units, the units
of length and energy are the most important—they are called the Bohr
(a◦) and Hartree (H), respectively.∗ Expressions for length and energy can
generally be expressed in terms of a◦ or H , and powers of the dimensionless
fine structure constant α introduced earlier. Most of the important atomic
units (along with their SI values) are listed in Table 1.1 below.

Table 1.1

Physical quantity Name Atomic unit SI value

Charge Electron charge e 1.602× 10−19 C

Angular momentum h-bar � 1.055× 10−34 J s

Mass Electron mass m 9.110× 10−31 kg

Length Bohr a◦ =
�
2

me2
5.292× 10−11 m

Energy Hartree H =
me4

�2
4.360× 10−18 J

(= 2 Ry) (27.2 eV)

Velocity
e2

�
= αc 2.180× 106 m/s

Magnetic moment Bohr magneton μB =
e�

2mc
1.400× 104 MHz/T

Electric Field
e

a2◦
5.142× 1011 V/m

∗One Hartree is two times the more familiar Rydberg.
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1. Fine structure constant

The fine structure constant that we saw earlier (and reproduced below) is
ubiquitous in atomic physics.

α =
e2

�c
= [ 137.035 999 074(44) ]−1

where the numerical value is the 2010 CODATA recommended value. The
number in round brackets is the uncertainty in the last digit, representing
a relative uncertainty of 3.2× 10−10, and is the standard way of expressing
a quantity with error.

The name fine structure reflects the appearance of this quantity (squared)
in the ratio of the hydrogenic fine structure splitting to the Rydberg.

Δ(fine structure)

Rydberg
= α2 Z4

n3�(�+ 1)

The fine structure constant will often crop up as the ratio between different
physical quantities having the same dimensions. An impressive example of
this is length, as seen in Table 1.2 below.

Table 1.2

Physical quantity Expression SI value

Bohr (radius of electron orbit in
Bohr’s model of hydrogen)

a◦ =
�2

me2
5.29× 10−11 m

Reduced Compton wavelength
(λc/2). λc is the change in wave-
length of a photon scattered at
90◦ by a stationary electron due to
recoil of the electron.

λ̄c = αa◦ =
�

mc
3.86× 10−13 m

Classical radius of the electron (size
for which electrostatic self energy
equals rest mass energy).

r◦ = α2a◦ = αλ̄c =
e2

mc2
2.82× 10−15 m
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D. Problems

1. Atomic units for E and B fields

The atomic unit of electric field is Eau ≡ e/a2◦, the field of the electron at
the proton in hydrogen.

(a) Find the magnetic field BN of the electron at the proton.

(b) Find the magnetic field BH which has one Hartree interaction with a
Bohr magneton.

(c) Express these fields in terms of Eau and α.

(d) Are there strong reasons to prefer BN or BH as the atomic unit of
magnetic field?

Solution

Recall the definitions of the atomic constants

α =
e2

�c
and a◦ =

�
2

me2

(a) The magnetic field at the center of a loop of radius a and carrying
current I is

B =
2πI

ca

For an electron in a circular orbit of radius a◦, the current is

I =
e

τ
=

e

2πa◦/v
=

eαc

2πa◦
Therefore the magnetic field of the electron at the proton is

BN =
2π

ca◦

eαc

2πa◦
=

eα

a2◦

(b) Using μB = e�/(2mc) and one Hartree is e2/a◦, the required magnetic
field is

BHμB =
e2

a◦
=⇒ BH =

2mce

a◦�

(c) In terms of Eau and α, the fields are

BN = Eauα and BH =
2Eau
α

(d) No preference. Though the choice is finally a matter of convenience, it
should be noted that BN is nearly 10 000 times larger.
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2. Unit of charge

(a) How is the unit of charge defined, and what are its dimensions, in the
SI system? (Give the most pertinent equations.)

(b) Same question for Gaussian units.

(c) Would it be possible to define a unit of mass à la the Gaussian definition
of charge, thereby eliminating the artifact mass standard?

Solution

(a) The SI unit of charge “coulomb” is defined through current.

I =
dq

dt
and

dF

d�
= 2μ◦

I1I2
4πr

The ampere is defined as that current which when flowing through two
infinitely long conductors placed one meter apart (cross-section ∼ 0),
produces a force/length of 2 × 10−7 N/m. Coulomb is then defined as
the current flowing per unit time.

Its dimensions are IT−1.

(b) Gaussian unit of charge “esu” is defined through the Coulomb force

F =
q1q2
r2

Two unit charges placed 1 cm apart produce a force of 1 dyne.

Its dimensions are M1/2L3/2T−1.

(c) There are two issues with using the Coulomb force analogy to define
mass.

(i) The Coulomb force already has a mass term in it because the force
is mass times the acceleration (from Newton’s second law of motion).
This mass is called the “inertial” mass. The mass term that appears
in the gravitational force equation is the “gravitational” mass, and
should be correctly called the “gravitational charge.” The fact that
these two masses are equal is a fundamental result from what is called
the “equivalence principle.” The equality is actually an empirical fact
(subject to experimental verification), which was used by Einstein in
formulating the general theory of relativity. If we accept this as a
true fact, then mass can indeed be defined using the gravitational force
equation

F =
m1m2

r2

The definition would be that two unit masses placed one meter apart
have an acceleration of 1 m/s2.
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(ii) The second issue with this definition is that it is not practical because
gravity is such a weak force that it would be overwhelmed by the elec-
trostatic force between the bodies, which cannot be shielded perfectly.

3. Universal units (Planck units)

Universal units are defined by setting c, �, and G equal to 1, which defines
units for M , L, and T . Find expressions for these units and calculate their
magnitude in SI units. These units are often called the Planck mass (or
energy since c = 1), Planck length, and Planck time.

Solution

Let the universal units be Mu, Lu and Tu

c = 1 =⇒ 2.998× 108 m/s = 1
Lu

Tu

� = 1 =⇒ 1.055× 10−34 kg m2/s = 1
MuL

2
u

Tu

G = 1 =⇒ 6.674× 10−11 m3/(s2 kg) = 1
L3
u

T 2
uMu

This yields

L2
u =

MuL
2
u

Tu

L3
u

T 2
uMu

T 3
u

L3
u

=
�G

c3

Lu =

√
�G

c3
=⇒ Lu = 1.616× 10−35 m

and

Mu =
MuL

2
u

Tu

Tu

Lu

1

Lu
=

�

cLu
=⇒ Mu = 2.177× 10−8 kg

Tu =
Tu

Lu
Lu =

Lu

c
=⇒ Tu = 5.391× 10−44 s



Chapter 2

Preliminaries

U
nderstanding the harmonic oscillator is the key to understanding
physics. In fact, it is no exaggeration to say that you understand 90%

of physics if you understand the classical harmonic oscillator, and 99% of
physics if you understand the quantum harmonic oscillator. This is because
nature abounds in such examples—from the simple pendulum to LCR cir-
cuits. Collective excitations like normal modes or phonons in a solid obey
the harmonic oscillator equation of motion. Perhaps the most important
reason is that it is the first step in understanding light. A light wave is like
a harmonic oscillator, except that instead of position and velocity oscillat-
ing (out of phase) as in a normal oscillator, it is the electric and magnetic
fields that oscillate in a light wave. It is called a wave only because the
disturbance propagates in some direction, but orthogonal to this direction
the fields just oscillate in time. This chapter, therefore, deals with the har-
monic oscillator and radiation, both classical and quantized. The radiation
part will be of use in Chapter 6, “Interaction.”

13
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A. Classical harmonic oscillator

We first consider the behavior of the one-dimensional harmonic oscillator
in the classical regime. In the presence of damping and driving, it obeys
the standard equation of motion

ẍ+ Γẋ+ ω2
◦x =

1

m
F (t)

where Γ is the damping, ω◦ is the frequency in the absence of damping
(also called the natural frequency of the oscillator), m is the mass of the
particle, and F (t) is the driving force.

1. Not driven

When the oscillator is not driven, x(t) will decay to zero. The equation
of motion simplifies to

ẍ+ Γẋ+ ω2
◦x = 0

and is called homogeneous, because if x(t) is a solution, then so is A ×
x(t). The solution is obtained by substituting x(t) = eαt, which yields the
characteristic equation

α2 + Γα+ ω2
◦ = 0

with roots

α± = −Γ/2±
√
(Γ/2)2 − ω2◦

Depending on the relative sizes of the damping and the frequency, we define
the following three regimes:

(i) Strong damping for Γ > 2ω◦. The solution is

x(t) = Beα+t + Ceα−t

which does not oscillate.

(ii) Critical damping for Γ = 2ω◦. This is a transition regime, with the
solution

x(t) = (B + Ct)e−Γt/2

which is solved in a slightly different manner because the two roots of
α become equal.
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(iii) Weak damping for Γ < 2ω◦. One defines ωm =
√

ω2◦ − (Γ/2)2 (the
pulled frequency), and the solution becomes

x(t) = e−Γt/2(B cosωmt+ C sinωmt)

= Ae−Γt/2 cos(ωmt+ φ)

where A2 = B2 + C2 and φ = tan−1 (C/B).
The quality factor—usually just called Q—is defined as

Q = ω◦/Γ

and is the number of radians of oscillation it takes to reduce the
energy by e. The energy is proportional to x2(t) and therefore damps
like e−Γt. In most cases, we will be dealing with a high Q oscillator,
which means that the change in amplitude per cycle is negligibly small.
Then the Q can also be interpreted as the ratio of the energy stored
to the energy lost per cycle.

The behavior for three cases of damping considered above are shown graph-
ically in Fig. 2.1, for the case ω◦ = 10 rad/s.

Figure 2.1: Behavior of an undriven harmonic oscillator for the three
cases of damping—strong, critical, and weak.
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2. Driven with weak damping

The driven damped harmonic oscillator is one which is driven by a
sinusoidally varying applied force with amplitude Fd. It has a steady-state
response at the driving frequency ω. It also has the transient response of an
undriven damped harmonic oscillator whose motion adds on to the steady-
state solution to meet the initial conditions. The oscillator is assumed to
be high Q, i.e. one where the damping is weak Γ � ω◦. The amplitude
and phase vary with the detuning from resonance ω − ω◦. The resulting
equation of motion

ẍ+ Γẋ+ ω2
◦x =

1

m
Fd cosωt

is typically solved by the complex exponential method, where the com-
plex equation of motion is found by changing x → z and cosωt → eiωt. x
is the real part of the complex solution

x = Re {z} = Re
{
z◦eiωt

}
Therefore, the solution to the equation of motion is

x(ω, t) = Re

{
Fde

iωt/m

(ω2◦ − ω2) + iΓω

}
= A(ω) cos (ωt+ φ)

(i) The amplitude of the response is

A(ω) =
Fd/m√

(ω2◦ − ω2)2 + Γ2ω2
≈ Fd/(2mω◦)√

(ω − ω◦)2 + (Γ/2)2
(2.1)

The approximate result (here and below) is valid near resonance (ω ≈
ω◦), which is the only place where the response is non-negligible for
high Q oscillators.

(ii) The phase of the response is

φ(ω) ≡ arg(z◦) = tan−1 Γω

ω2 − ω2◦
≈ tan−1 Γ

2 (ω − ω◦)

and is always 0 ≥ φ ≥ −π. It represents motion that always lags
behind the drive: by a little when ω � ω◦ (inertia has negligible
effect) and
by approximately π when ω 	 ω◦ (inertia dominates).

(iii) The power averaged over a cycle supplied by the force (and dissipated
by the damping) is

P (ω) = 〈F ẋ(ω)〉 = Fd〈cosωtRe
{
iωz◦eiωt

}〉 = ωFd

2
Im {−z◦}
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Therefore

P (ω) =
ΓF 2

d

2m

ω2

(ω2◦ − ω2)2 + Γ2ω2
≈ F 2

d

8m

Γ

(ω − ω◦)2 + (Γ/2)2

where the approximate result is written so that it shows explicitly that
the lineshape is Lorentzian.

Figure 2.2: Amplitude, phase, and (normalized) power dissipated per
cycle of a driven harmonic oscillator. The solid curves are for the weak
damping case (Γ = ω◦/5), shown in Fig. 2.1. The power dissipated has
a Lorentzian lineshape with linewidth Γ. The dotted curves are for the
case of no damping.

In Fig. 2.2, we plot the amplitude, phase, and power dissipated of the
driven oscillator discussed above, comparing the cases of weak damping
(Γ = ω◦/5) with no damping. It is important to note that the amplitude
remains finite throughout, except on resonance in the no-damping case.
The lineshape is that given by Eq. (2.1), which is not a Lorentzian. On
the other hand, the average power dissipated as already mentioned has a
Lorentzian lineshape near resonance—this curve is a universal feature of
all resonance phenomena. Its linewidth Γ, defined as the full width at half
maximum (FWHM), is equal to Δω, so that the Q can also be defined as

Q =
ω◦
Δω
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When there is no damping, the power dissipated is zero away from reso-
nance. This is because whatever energy is supplied by the drive in one half
of the cycle is recovered in the second half, and the net energy transferred
per cycle is zero. On resonance, the power becomes infinite because the
amplitude blows up. The lineshape becomes that of a Dirac delta function.
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3. Harmonically bound electron

Consider a harmonically bound electron of charge e and mass m, with
its natural frequency equal to the absorbed or emitted frequency when
the atom makes a transition between two states. To start with, let it be
undamped and driven by a field E cosωt, so that

Fd = e E cosωt

The resulting motion can be regarded as an oscillating dipole moment.
From the amplitude response in Eq. (2.1), we get

d = eA(ω) =
e2

m

1

ω2◦ − ω2
E cosωt

This expression will be useful when dealing with oscillator strengths
for describing atomic polarizability, which we will encounter in Chapter 3,
“Atoms.”

Even in the absence of other kinds of damping, the motion will be damped
because of what is called radiation damping. From classical electro-
dynamics, we know that any accelerated charge will emit radiation. For
example, an electron in a circular orbit around a proton is constantly be-
ing accelerated, and therefore loses energy. This is why such a “planetary”
model for the hydrogen atom failed until Bohr postulated stationary orbits
where the electron does not lose energy. The total power radiated by an
accelerated electron in the full solid angle of 4π is

P =
2

3

e2

c3
|v̇|2 v̇ is acceleration

For an oscillating electron, v̇ = −ω2
◦x, hence the total energy lost per cycle

is

Elost =
2

3

e2

c3
ω3
◦x

2
◦

2
x◦ is amplitude of the motion

As mentioned earlier, the Q for such a high Q oscillator is the ratio of the
energy stored (= 1

2mω2
◦x

2
◦) to the energy lost. Hence the damping term

becomes

Γradiation =
2

3

e2ω2
◦

mc3
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4. Coupled oscillators

The simplest coupled oscillator problem consists of two identical masses on
springs so that they have identical natural frequencies (degenerate), which
are coupled together using a third spring with a different spring constant,
as shown in Fig. 2.3(a). Due to the coupling, the equations of motion for
x1 and x2 are coupled and cannot be solved independently. But there are
linear superpositions of these displacements, called normal modes, which
do obey the harmonic oscillator equation and oscillate at some characteristic
frequency.

Figure 2.3: Coupled oscillator system. (a) At equilibrium. (b) When a
normal mode called common mode—corresponding to in-phase motion
of the two masses—is excited. (c) When a normal mode called stretch
mode—corresponding to out-of-phase motion of the two masses—is ex-
cited.

The problem of finding these normal modes is a standard problem in clas-
sical mechanics. It consists of diagonalizing the following matrix

A =

[
k + k′ −k′

−k′ k + k′

]
Defining ω◦ =

√
k/m and ω′ =

√
k′/m, this yields the normal modes as

ηc = (x1 + x2)/
√
2 ωc = ω◦ common mode

ηs = (x1 − x2)/
√
2 ωs =

√
ω2◦ + 2ω′2 stretch mode

which are depicted in Fig. 2.3(b) and (c). What this means is that if one
of the normal modes is excited, then the energy stays in that mode forever.
On the other hand, if x1 is given some initial amplitude, then both the
normal modes are excited because

x1(0) = 1 and x2(0) = 0 =⇒ ηc(0) = 1/
√
2 and ηs(0) = 1/

√
2
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The time dependence of each normal mode is just η(t) = η(0) cosωt. Pro-
jecting back to x1 and x2, one gets

x1(t) =
1

2
(cosωct+ cosωst) = cos

(
ωc + ωs

2
t

)
cos

(
ωs − ωc

2
t

)

x2(t) =
1

2
(cosωct− cosωst) = sin

(
ωc + ωs

2
t

)
sin

(
ωs − ωc

2
t

)
These two motions are shown in Fig. 2.4. One sees that the amplitude swaps
between x1 and x2 at a frequency equal to half the difference in frequencies
between the two normal modes. In the language of atomic physics, this is
called Rabi flopping—each motion is a rapid oscillation that is amplitude
modulated at the Rabi frequency. If we turn on the coupling for a time
equal to exactly one swap, i.e. for a complete transfer from x1 to x2, it
would be called a “pi pulse” in NMR.

Figure 2.4: Rabi oscillations in the two coupled oscillator system shown
in Fig. 2.3, when x1 is started with an initial amplitude 1. Upper
curve is x1(t) and lower curve is x2(t), showing out-of-phase amplitude
modulation at the Rabi frequency. Parameters used for the simulation:
ωc/2π = 38 Hz and ωs/2π = 42 Hz.
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The underlying reason for the difference in frequencies of the two normal
modes is the difference in symmetries in terms of the original variables—the
common mode is the symmetric combination, while the stretch mode is the
antisymmetric combination. The symmetric combination always has lower
frequency (hence lower energy) compared to the antisymmetric one. In
chemistry, if two atoms come close enough to interact and form a molecule,
then the symmetric combination of their wavefunctions leads to the lower-
energy bonding orbital, whereas the antisymmetric combination leads to
the higher-energy antibonding orbital. In a crystalline solid, the orbitals
extend into a band because of the large number of atoms (on the order of
NA ≈ 1023) involved. The bonding orbital then becomes the valence band,
while the antibonding orbital becomes the conduction band. The energy
gap between the two—bandgap—is a measure of the coupling between the
atoms. This coupling (and hence the bandgap) can be changed by either
heating the solid or applying pressure.
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B. Quantum harmonic oscillator

We briefly review the standard approach to quantization of the harmonic
oscillator. The first step is to replace the classical variables x and p with the
corresponding quantum mechanical operatorsX and P . Then the quantum
mechanical Hamiltonian becomes

H =
P 2

2m
+

1

2
mω2X2 with [X,P ] = i�

We now define dimensionless quadrature operators as

X̂ =

√
mω

2�
X

Ŷ =
1√

2m�ω
P

The Hamiltonian then simplifies to

H = �ω(X̂2 + Ŷ 2) with [X̂, Ŷ ] = i/2

Define new operators

Raising (Creation) operator: a†≡ X̂ − iŶ

Lowering (Annihilation) operator: a ≡ X̂ + iŶ

Then

X̂ = (a† + a)/2

Ŷ = i(a† − a)/2
(2.2)

and the Hamiltonian becomes

H = �ω(a†a+ 1/2) = �ω(N + 1/2) with [a, a†] = 1 (2.3)

where N ≡ a†a is the number operator.
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1. Energy eigenstates

In the time-independent Schrödinger picture, one finds the stationary
states |n〉 of the Hamiltonian by solving the eigenvalue equation

H |n〉 = En |n〉

From Eq. (2.3) we can see that |n〉 is also an eigenstate of N

N |n〉 = n |n〉

which is why N is called the number operator. Therefore

E0 =
1

2
�ω and En =

(
n+

1

2

)
�ω

The operator a is not Hermitian and therefore not an observable because

〈(n− 1)|a|n〉 = √
n but 〈n|a|(n− 1)〉 = 0

Some important properties of the eigenstates |n〉 are as follows.

(i) |n〉 is not degenerate.
(ii) |n〉 is orthogonal to |n′〉.
(iii) |n〉 has definite parity. Under x → −x, |n〉 → (−1)n |n〉.
(iv) Action of operators

a |n〉 = √
n |(n− 1)〉 ← Lowering

a† |n〉 = √
n+ 1 |(n+ 1)〉 ← Raising

(v) Wavefunctions

φ0(x) ∼ exp

(
−1

2

mω

�
x2

)
← Ground

φn(x) ∼ (nth order Hermite polynomial)× exp

(
−1

2

mω

�
x2

)

Since the state |n〉 is obtained by n operations of the raising operator a†

on the state |0〉, the normalized number (Fock) state is

|n〉 = 1√
n!
(a†)n |0〉
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2. Time dependence

The foregoing treatment is in the time-independent Schrödinger picture. In
general the time dependence is found by expanding the initial state in the
basis of energy eigenstates∗

|ψ(0)〉 =
∑
n

cn |n〉

so that the the time evolution operator

U(t) = e−iHt/�

can be applied easily. Then each term in the expansion picks up a phase
corresponding to its energy, so that the time dependent wavefunction be-
comes

|ψ(t)〉 = e−iHt/� |ψ(0)〉 =
∑
n

cne
−iEnt/� |n〉

In this picture, the operators X̂, Ŷ , a†, etc., are also time independent, but
their expectation values do evolve in time, e.g.

d

dt
〈a〉t ≡

d

dt
〈ψ(t)|a|ψ(t)〉

=
1

i�
[−〈ψ(t)|Ha|ψ(t)〉+ 〈ψ(t)|aH |ψ(t)〉]

=
1

i�
〈ψ(t)|[a,H ]|ψ(t)〉

=
1

i�
〈ψ(t)|�ωa|ψ(t)〉

= −iω 〈a〉t
=⇒ 〈a〉t = 〈a〉0 e−iωt

(2.4)

∗This procedure is similar to how the initial displacement was expanded in terms of the
normal modes for the classical coupled oscillator case in Section A4.
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3. Quantum uncertainties

The 1/2 in the Hamiltonian [Eq. (2.3)], and the consequential ground state
energy being �ω/2, is an entirely quantum phenomenon. The lowest energy
state of a classical HO is at rest, i.e. both its position and momentum are
zero. But, in quantum mechanics, this would violate the Heisenberg uncer-
tainty principle: ΔXΔP ≥ �/2. Hence, the lowest energy state allowed in
quantum mechanics—the |0〉 state—is one with minimum uncertainty, i.e.

ΔXΔP = �/2. In terms of the quadrature operators X̂ and Ŷ introduced

earlier, the uncertainty relationship is ΔX̂ΔŶ ≥ 1/4, and the |0〉 state has
ΔX̂ΔŶ = 1/4. The energy of this state of �ω/2 is called the zero-point
energy.

In general, the uncertainties are found from the standard deviation of the
relevant quantity in a state, e.g.

ΔX̂ ≡
√
〈(ΔX̂)2〉 =

√
〈(X̂ − 〈X̂〉)2〉 =

√
〈X̂2〉 − 〈X̂〉 2

For number states |n〉 this may easily be evaluated by noting that 〈X̂〉 = 0.
Therefore

(ΔX̂)2 = 〈X̂2〉
= 〈n|[(a+ a†)(a+ a†)]|n〉 /4
= 〈n|[aa† + a†a]|n〉 /4
= 〈n|2a†a+ 1|n〉 /4
= (2n+ 1)/4

=⇒ ΔX̂ =
√
(2n+ 1)/4

Similarly we can show that ΔŶ =
√
(2n+ 1)/4. Thus we see that in general

number states are not minimum uncertainty states. But the ground state
|0〉 is indeed a minimum uncertainty state with

ΔX̂ = ΔŶ = 1/2

Recall that its wave function (in the x coordinate) is pure Gaussian with

width of
√
�/mω. Therefore, the X̂ uncertainty is as big as the whole wave

function, which is characteristic of a thermal distribution. There might be
a deeper significance to this in the sense that the uncertainty principle has
a thermal origin, à la Einstein’s statement “God does not play dice with
the Universe.”
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Because the two uncertainties are equal, the distribution in the X̂Ŷ plane
is circularly symmetric. As seen in Fig. 2.5, the ground state is like a
“fuzz ball” at the origin, with the points distributed radially in a Gaussian
manner. Each point should be thought of as the values of X̂ and Ŷ obtained
from a single measurement. After a large number of measurements, one
gets the mean and standard deviation for each variable, which are 0 and
1/2 respectively.

Figure 2.5: Phase space plot of the |0〉 ground state of the quantum
harmonic oscillator, showing the distribution in the quadrature variables
X̂ and Ŷ due to the uncertainty principle. Each point is the result of
a single shot of measurement of the two variables. The distribution is a
circularly symmetric fuzz ball at the origin.



28 Preliminaries

C. Coherent states

The number states of a harmonic oscillator are stationary states of the
system—the dynamical variables do not oscillate, in fact 〈X̂〉 and 〈Ŷ 〉 are
identically 0. In order to get non-zero expectation values for X̂ or Ŷ (which
oscillate at frequency ω and behave like the classical variables, as a conse-
quence of Ehrenfest’s theorem), we need linear superpositions of the |n〉. As
we will see below, coherent states satisfy this requirement; in fact they are
the most classical-like states that quantum mechanics will allow. They are
important in modern spectroscopy because they represent the state coming
out of a laser.

1. Definition and properties

Coherent states are defined to be eigenstates of the annihilation operator
a, i.e.

a |α〉 = α |α〉 (α is complex because a is not an observable)

=⇒ 〈α| a† = α∗ 〈α|

A little bit of algebra shows that its expansion in number states is

|α〉 = e−
|α|2

2

∑
n

αn

√
n!

|n〉

Some important properties of coherent states are as follows.

(i) Average number of quanta, 〈n〉α ≡ 〈α|N |α〉 = |α|2.
(ii) Average of n2, 〈n2〉α ≡ 〈α|N ·N |α〉 = |α|4 + |α|2.

(iii) Probability of finding n quanta ≡ | 〈n|α〉 |2 = e−〈n〉c (〈n〉c)
n

n!
,

which is Poissonian.

(iv) |α〉 and |β〉 are not orthogonal, because 〈α|β〉 = e[|α|
2/2+|β|2/2] �= 0,

which is to be expected because a is not an observable.

(v) Coherent states do not form a basis, which is again expected because
a is not an observable. In fact, they form an overcomplete basis,∫ |α〉〈α| d2α = π �= 1.
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2. Time evolution

The time evolution of a coherent state results in another coherent state. To
see this, we evaluate the formal expression for time evolution

|α(t)〉 = e−iHt/� |α〉

= e−iHt/�e−|α|2/2 ∑
n

αn |n〉√
n!

= e−|α|2/2 ∑
n

αne−iω(n+ 1
2
)t |n〉√

n!

= e−iωt/2e−|α|2/2 ∑
n

(αe−iωt)n |n〉√
n!

= e−iωt/2 |αe−iωt〉

The last line shows that the time evolved coherent state is just the original
state with a time varying argument whose phase evolves like the classical
phase.

From Eq. (2.4), we know that 〈a〉t = 〈a〉0 e−iωt. For a coherent state
〈a〉0 = α. Therefore

〈a〉t = αe−iωt =⇒ 〈a†〉t = α∗eiωt

Using this we can show that 〈X̂〉 and 〈Ŷ 〉 evolve like the corresponding
classical variables.

〈X̂〉t = 〈α(t)|(a† + a)|α(t)〉 /2
= [〈a†〉t + 〈a〉t]/2
= [α∗eiωt + αe−iωt]/2

= Re{αe−iωt}

〈Ŷ 〉t = i[α∗eiωt − αe−iωt]/2

= Im{αe−iωt}
Thus both 〈X̂〉t and 〈Ŷ 〉t are real oscillating functions. The amplitude of

〈X̂〉t is |α| and its phase is −Phase(α). Clearly α is the quantum analog of
the complex amplitude z◦ in the classical oscillator. The quantity z◦e−iωt

is called the phasor in classical mechanics; its analog here is αe−iωt.
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3. Coherent states have minimum uncertainty

As we shall now show, coherent states are minimum uncertainty states
for all values of α. We note that

〈α|X̂2|α〉 = 〈α|(a† + a)(a† + a)|α〉 /4
= 〈α|a†a† + a†a+ aa† + aa|α〉 /4
= (α∗2 + 2|α|2 + 1 + α2)/4

〈α|X̂ |α〉 = (α∗ + α)/2

Therefore

(ΔX̂α)
2 = [(α∗2 + 2|α|2 + 1 + α2)− (α∗ + α)2]/4 = 1/4

Similarly we can show that

(ΔŶα)
2 = 1/4

Hence the coherent state is a minimum uncertainty state with ΔX̂α =
ΔŶα = 1/2.

4. Phase space behavior

The previous discussion shows that the coherent state is exactly like the
ground state of the harmonic oscillator in terms of the uncertainty distri-
bution; the difference is that the distribution is centered not at the origin
but at α in phase space. Graphically, this means that the fuzz ball at
the origin in the X̂Ŷ plane that we saw in Fig. 2.5 now gets displaced to
α. This is shown in Fig. 2.6. At t = 0, the center of the fuzz ball is at
〈X̂〉0 = Re(α) and 〈Ŷ 〉0 = Im(α). At later times, the ball rotates counter-
clockwise along the circular trajectory, which is the orbit followed by the
equivalent classical HO. As expected from Ehrenfest’s theorem, the center
of the fuzz ball is always at the expectation values of the two variables, i.e.
at 〈X̂〉t = Re(αe−iωt) and 〈Ŷ 〉t = Im(αe−iωt) at t.

If we define the displacement operator as

D(α) ≡ exp [αa† − α∗a]

then the fact that |α〉 = D(α) |0〉 shows that a coherent state is simply

the ground state displaced by α in phase space. Noting that 〈X̂〉 and 〈Ŷ 〉
oscillate, one sees that the wave function for a coherent state is an oscillating
Gaussian—it’s just the wave function φ0(x) oscillating back and forth in
the potential (and correspondingly in momentum space).
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Figure 2.6: Coherent state in phase space. The fuzz ball shown in Fig.
2.5 (representing the minimum uncertainty ground state in the X̂ and Ŷ

variables) gets displaced so that its center is located at 〈X̂〉t and 〈Ŷ 〉t.
They are given by the real and imaginary parts of the complex number
αe−iωt, respectively. α evolves along the circle, which is the trajectory
followed by the equivalent classical HO.
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D. Squeezed states

Squeezed states are important for precision measurements because they
have the potential to get precision better than that set by the uncertainty
principle. They are defined as quantum states which have imbalanced
uncertainties between two conjugate variables, such as P and X in a har-
monic oscillator. They must, of course, satisfy the uncertainty principle
ΔP ΔX ≥ �/2. But if the signal is encoded in the X variable, one gains
in signal-to-noise ratio (SNR) by having a smaller ΔX (if one is limited by
quantum noise), while the increased uncertainty in P does not affect the
measurement.

A balanced distribution of uncertainties means that the quantities ΔP and
ΔX remain constant in time. In a harmonic oscillator this occurs when

ΔP = ωΔX

If the oscillator is prepared with a different distribution, then ΔP and ΔX
will oscillate. For example, if ΔP is small and ΔX is big, the potential
will cause the portions of the wavepacket at large X to accelerate so that
ΔP will increase dramatically during the next quarter period. If one thinks
classically of an ensemble of oscillators prepared at the bottom of the po-
tential with a statistical distribution having a narrow ΔX and large ΔP ,
it is clear that they will rapidly spread due to their high initial velocity
distribution. A quarter period later they will all have stopped, so ΔP will
be a minimum; however, ΔX will be a maximum. This out-of-phase os-
cillation of uncertainties for conjugate variables is a hallmark of squeezed
states; note that it occurs at 2ω.

1. Hyperbolic transform of the HO Hamiltonian

We now present a mathematical treatment of squeezing in a harmonic oscil-
lator. The basic idea is to make a hyperbolic rotation of the operators a and
a† to b and b†, a transformation which distorts the X̂Ŷ phase space while
preserving the commutator. A new Hamiltonian with the same form as the
old one is obtained, which has number states which are called generalized
number states. Investigation of the generalized vacuum∗ will show that
this new state has squeezed uncertainties in the old quadrature variables,
X̂ and Ŷ .

The transformation to the generalized raising and lowering operators is

b ≡ a cosh r − a†e2iθ sinh r

b† ≡ a† cosh r − ae−2iθ sinh r

∗The ground state is often called the vacuum state even for non-electromagnetic harmonic
oscillators.
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where r is the distortion parameter, stretching by a factor er along an axis
at angle θ to the X̂ axis, and shrinking by a factor of e−r perpendicular to
this axis, while preserving the area. This is called a Bogoliubov transfor-
mation and corresponds closely to a rotation with hyperbolic trigonometric
functions. It can be verified that the transformation preserves the commu-
tator, [b, b†] = 1. Defining the unitary squeezing operator S(r, θ) which
does this transformation, i.e. SaS−1 = b or Sa†S−1 = b†, one finds

S = exp
[r
2

(
e−2iθa2 − e2iθa†2

)]
Hence the transformed Hamiltonian H ′ = SHS−1 is

H ′ = �ω(b†b+ 1/2)

which has the same form as the original Hamiltonian H . The corresponding
quanta are not eigensolutions of H , but correspond to a superposition state
that reforms itself after one period, and which has squeezed variances that
oscillate twice each period.

Figure 2.7: The solid line is the ideal squeezing achievable for various
values of the squeeze parameter r (with θ = 0). The shaded regions

have significant but not ideal squeezing. The region with ΔX̂ > 1/2 and

ΔŶ > 1/2 is unsqueezed.
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In the following we specialize to θ = 0 for clarity. The generalized quadra-
ture operators are defined analogously to X̂ and Ŷ

X̂b = (b† + b)/2 = X̂e−r

Ŷb = i(b† + b)/2 = Ŷ er

showing that the stretching occurs along the X̂ and Ŷ axes. The Hamilto-
nian then becomes

H ′ = �ω(X̂2
b + Ŷ 2

b ) = �ω(X̂2e−2r + Ŷ 2e2r)

which may be interpreted in two ways.

(i) It may be written using the original position and momentum operators
as

H ′ =
P 2

2me−2r
+

1

2
me−2rω2X2

which is an oscillator with the same frequency but mass smaller by
e2r.

(ii) Alternatively, one can write

H ′ = �ω
[
e−2r(X̂2 + Ŷ 2) + 2Ŷ 2 sinh 2r

]
which is the HO Hamiltonian plus a nonlinear perturbation in Ŷ .

2. Squeezed vacuum

Since both the commutator and the transformed Hamiltonian, when ex-
pressed in terms of b and b†, have exactly the same mathematical form as
the HO Hamiltonian when a and a† were used, the eigensolutions are the
same. So we can immediately write down ΔX̂b = ΔŶb = 1/2. Hence

〈0b|ΔX̂ |0b〉 = er/2

〈0b|ΔŶ |0b〉 = e−r/2

showing squeezing but maintaining the uncertainty product. There-
fore the generalized vacuum state |0b〉 represents a squeezed state with
respect to the original oscillator.
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How do we express the squeezed vacuum |0b〉 in terms of the old states
|n〉? The usual approach is to use the unitary squeezing operator S defined
earlier so that

|0b〉 = S |0〉 = A

{
|0〉+

∞∑
n=1

(−1)n tanh2n r

[
(2n− 1)(2n− 3) · · · 1

2n(2n− 2) · · · 2
]1/2

|2n〉
}

where A is a normalization constant. Note that only even number states are
involved. This reflects the appearance of a2 and a†2 in S, and also means
that |0b〉 has even parity. For this reason, squeezed states are sometimes
referred to as two-photon states. |0b〉 is the time-independent state; in
|0b(t)〉 each |n〉 evolves with a prefactor e−i(n+1/2)ωt. Since |0b〉 involves
only even n, it will return to itself (within a phase) in half the period.

In Fig. 2.8, we compare the effect of squeezing on the vacuum state in
phase space. The circular fuzz ball for the normal vacuum state that we
saw earlier (Fig. 2.5) becomes elliptical for the squeezed vacuum. The

squeezing parameters are r = 0.7 and θ = 0 (stretched along the X̂ axis).

Figure 2.8: Phase space plot showing how the circular distribution for
the normal vacuum (left) gets transformed into an elliptic distribution
for the squeezed vacuum (right). The squeezing parameters are r = 0.7
and θ = 0.
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3. Classical squeezing by FM at 2ω◦

Anyone who has played on a swing as a child knows that one can self am-
plify the motion by modulating the length at twice the oscillation frequency,
a process called parametric amplification. One learns instinctively to
crouch at the bottom (increasing the length of the “pendulum”) and stretch
at the ends (decreasing the length), thus changing the length twice every
period. It is called parametric because what is being modulated is a
parameter that determines the frequency. Here, we will see that such fre-
quency modulation results in squeezing of the distribution of the quadrature
components of motion of an ensemble of (classical) harmonic oscillators in
thermal equilibrium.

Consider a mass m which moves in the following potential

U(t) =
1

2
kx2 +

ε

2
kx2 sin 2ω◦t with ω◦ =

√
k/m

This is a harmonic oscillator potential which is modulated in frequency by a
small amount (i.e. ε � 1) at twice its natural frequency. The corresponding
equation of motion is

ẍ+ ω2
◦x = −ω2

◦xε sin 2ω◦t (2.5)

Since ε is small, we guess the solution

x(t) = B(t) cosω◦t+ C(t) sinω◦t

This is the usual solution for an undamped harmonic oscillator except that
B and C are not constants but functions of time. But the time variation is
taken to be very slow, slow enough that second derivatives can be neglected.
Therefore

ẍ(t) ≈ −ω2
◦x(t) − ω◦Ḃ sinω◦t+ ω◦Ċ cosω◦t

and substitution in the equation of motion [Eq. (2.5)] yields

−ω◦Ḃ sinω◦t+ ω◦Ċ cosω◦t = ω2
◦ε[B cosω◦t+ C sinω◦t] sin 2ω◦t

Using trigonometric identities and averaging away the terms rapidly oscil-
lating at 3ω◦ gives

−Ḃ sinω◦t+ Ċ cosω◦t =
−εω◦
2

[B sinω◦t+ C cosω◦t]

The coefficients of sinω◦t and cosω◦t must be separately equal, hence

Ḃ = +
εω◦
2

B Ċ = −εω◦
2

C
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Therefore the coefficients B(t) and C(t) are

B(t) = B◦e+εω◦t/2 C(t) = C◦e−εω◦t/2

showing that one quadrature component increases exponentially with time
at the expense of the other. Note that the parametric drive increases the
total energy of the oscillator, the signature of any amplification process.

If we consider an ensemble of identical harmonic oscillators in equilibrium
with a thermal bath, then both quadrature components of the motion will
have a Gaussian distribution. By applying the FM drive discussed above,
one quadrature component increases and the other decreases. Thus the
statistical distribution of the ensemble gets progressively squeezed. Consis-
tent with Liouville’s theorem, the coherent nature of the drive means that
the area in phase space (proportional to the entropy) cannot change, but
the shape can become elongated. This statistical squeezing of an ensem-
ble of classical oscillators is entirely analogous to the quantum mechanical
squeezing of the uncertainty principle distribution of a state. The squeez-
ing parameter is r = εω◦t/2, showing that the degree of squeezing increases
with time.

4. Generating squeezed light

The classical calculation of squeezing by quadrature-sensitive parametric
amplification using a pump at 2ω◦ and a coupling potential which con-
tains a nonlinear coupling term x2 provides suggestions as to how squeez-
ing might be accomplished in a quantum mechanical system. First of all, a
nonlinear coupling to the quantum oscillator to be squeezed is needed—i.e.
the perturbation Hamiltonian must contains a term like

X̂2 ∼ (a† + a)(a† + a) = a†2 + (a†a+ aa†) + a2

The (a†a+ aa†) portion can be absorbed into the HO Hamiltonian, leaving

ΔH = Ka†2 +K∗a2

a form which is Hermitian and which is (reassuringly) like the exponent of
the squeezing operator.

The first two ways to generate squeezing which were experimentally demon-
strated involved parametric down conversion and four-wave mixing.

(i) In parametric down conversion, the pump is a strong coherent wave
at frequency 2ω and

ΔH = χ(2)[a2ωa
†2 + a†2ωa

2]
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where a2ω is the destruction operator for pump photons. For a coher-
ent pump in a state |α2ω〉 the expectation value of a2ω is

〈a2ω〉 = Re{α2ωe
−2ω◦t}

so a2ω acts like a classical pump at frequency 2ω◦. The term a2ωa
†2

destroys one pump photon at 2ω◦ and generates two photons with
definite relative phase at ω◦, conserving energy.

(ii) In four-wave mixing

ΔH = χ(3)[a′2(a†)2 + (a′†)2a2]

where a′ and a′† represent annihilation and creation operators at fre-
quency ω◦, but for a mode field different from a and a† (e.g. laser
beams going in different directions).

The factors χ(n) in the foregoing perturbation interactions are termed nth

order nonlinear susceptibilities, which will be discussed in a later chapter.

Why/how do perturbation Hamiltonians like those above generate squeezed
light? The most straightforward way to see this is to recall the time evolu-
tion operator U(t) in the Schrödinger picture, where H◦ = �ω(a†a + 1/2)
and ΔH is given above. This shows that the time evolution of wave function
is given by

ψ(t) = ψ(0)e−i(H◦+ΔH)t/�

Thus (after a disentangling theorem is used)

ψ(t) = e−H◦t/� ψ(0)e−iΔHt/�

Since ΔH is the squeezing operator, an initially unsqueezed state will be-
come progressively squeezed. The amount of squeezing is proportional to
the time, just as it was in the classical case.
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5. Balanced homodyne detector

A balanced homodyne detector, shown schematically in Fig. 2.9, is the
optical analog of the ubiquitous lock-in amplifier found in experimental
labs. It allows detection of a weak signal in a phase sensitive manner with
noise below the vacuum fluctuations.

Figure 2.9: Schematic of an optical balanced homodyne detector.

Balanced refers to subtracting the outputs of the two detectors to get the
output,

I(t) = i1(t)− i2(t)

Homodyne means the local oscillator has the same frequency as the signal.

e(t) = Ŷ cosωt− X̂ sinωt (weak signal)

EL(t) = EL cos (ωt+ β) (local oscillator signal)

ELN (t) = noise in local oscillator (at least vacuum fluctuations)

β is an experimenter-adjustable phase that allows detection of any phase
of the signal with respect to the local oscillator. For example, many appli-
cations may require the in-phase component to be detected, in which case
β will be set to 0.

The photodetector currents are

i1(t) ∝ [EL(t) + ELN (t) + e(t)]2 (square law detector)

� E2
L(t) + 2EL(t)ELN (t) + 2EL(t)e(t) (neglect e2 and eELN)

i2(t) ∝ E2
L(t) + 2EL(t)ELN (t)− 2EL(t)e(t)
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The −ve sign arises at the beamsplitter; the interference term between EL

and e must have opposite signs at the two detectors to make the power out
equal to the power in.

Thus the final detected current (after using a low pass filter to remove 2ω
components) is

I(t) ∝ 4EL(t)e(t) = 2EL[Ŷ (t) cos β + X̂(t) sinβ]

This shows the insensitivity of a balanced homodyne detector to technical
and vacuum noise in the local oscillator.

If we are interested in measuring a weak signal like that from a gravitational
wave, then we will gain in sensitivity by using a squeezed state for e(t).
The signature of such a state will show up in the statistics of I(t)—it will
be Poissonian for a normal coherent state and sub-Poissonian for the
squeezed state.
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E. Radiation

We start by describing radiation in a classical electromagnetic field, and
take up quantization∗ later. This approach of treating the radiation classi-
cally while treating the atom quantum mechanically is called semiclassical.
Although fundamentally inconsistent, it provides a natural and intuitive
approach to the study of interaction of EM radiation with atomic systems.
Furthermore, it is completely justified in cases where the radiation fields
are large, i.e. there are many photons in each mode, as for example in the
case of microwave or laser spectroscopy. The chief disadvantage is that this
treatment does not predict spontaneous emission, thus forcing us to use
complex eigenvalues to mimic the presence of this decay in excited states.
Nevertheless, phenomenological properties such as selection rules, radiation
rates and cross sections, can be developed naturally with this approach.

Classical electrodynamics is based on the following set of four Maxwell’s
equations

∇ · �E = 4πρ

∇× �E = −1

c

∂ �B

∂t

∇ · �B = 0

∇× �B =
4π�j

c
+

1

c

∂ �E

∂t

These equations are for the �E and �B fields; their form allows us to define
potentials—a scalar potential φ and a vector potential �A. In terms of the
potentials, the two fields are

�E = −∇φ− 1

c

∂ �A

∂t
and �B = ∇× �A

In quantum mechanics, the potentials are considered more fundamental
than the fields, as exemplified by the Aharonov–Bohm effect where the
electron wavefunction picks up a phase in a region where �B is zero but �A is
non-zero. As we will see below, even the quantization of the radiation field
relies on defining operators for �A.

Since the curl of gradient of any function is zero, we can always add the
gradient of any function to the vector potential without changing �B—this
is called gauge invariance. Of course, to keep �E unchanged, φ must also
be changed appropriately. Hence, the complete gauge transformation which
keeps the fields unchanged is

�A → �A+∇χ and φ → φ− 1

c

∂χ

∂t
∗My personal view on the nature of a photon is detailed in Appendix B, “What Is a
Photon?”
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If we use the following Lorenz gauge

∇ · �A+
1

c

∂φ

∂t
= 0

then the Maxwell’s equations result in the following decoupled wave equa-
tions for the potentials

∇2φ− 1

c2
∂2φ

∂t2
= −4πρ

∇2 �A− 1

c2
∂2 �A

∂t2
= −4π�j

c

(2.6)

1. Field modes are classical oscillators

Light is just an EM wave propagating in a source-free region, i.e. in a
region where ρ = 0 and �j = 0, which implies that the wave equations in Eq.
(2.6) reduce to their homogeneous form. In such a region, we can make a
gauge transformation that eliminates φ by choosing χ such that∗

φ =
1

c

∂χ

∂t

Therefore the Lorenz gauge becomes what is called the radiation gauge

∇ · �A = 0

If we divide the vector potential into its longitudinal and transverse com-
ponents — �A‖ and �A⊥—and note that

∇ · �A⊥ = 0 and ∇× �A‖ = 0

then the radiation gauge implies that only transverse fields survive in the
radiation zone. This is in fact the defining characteristic of radiation—that
the �E and �B fields are transverse. One way to think about this is to
say that the gauge freedom allows the longitudinal component of the vector
potential to cancel the scalar potential, so that only its transverse compo-
nent survives. Thus in the radiation zone �A satisfies the homogeneous wave
equation

∇2 �A− 1

c2
∂2 �A

∂t2
= 0 with ∇ · �A = 0 (2.7)

Radiation fields are found by solving the above wave equation. Each mode
with a particular value of the wave vector �k and the polarization λ is inde-
pendent. The polarization, defined as the path traversed by the tip of the

∗Important: This can be done only in a source-free region, and is not relativistically
covariant.



Radiation 43

electric field vector—linear if it oscillates along a line, circular if it tra-
verses a circle, and elliptic in general—can take on two independent values.
If we define the plane perpendicular to the direction of propagation as the
xy plane and choose suitable unit vectors, then the two sets of orthogonal
polarizations are

ε̂lin = ε̂x ± ε̂y orthogonal linear

ε̂circ = ε̂x ± iε̂y right or left circular

The vector potential that solves Eq. (2.7) is (with ωk = c|�k|)

�A(�r, t) =
∑
k,λ

ε̂kλ

[
Akλe

i(	k·	r−ωkt) +A∗
kλe

−i(	k·	r−ωkt)
]

with ε̂ ·�k = 0

(2.8)

in which the spatial modes are traveling waves (with periodic boundary

conditions). The corresponding fields are (with θ ≡ �k · �r − ωkt)

�E(�r, t) = −1

c

∂ �A

∂t
=

i

c

∑
k,λ

ωkε̂kλ
[
Akλe

iθ −A∗
kλe

−iθ
]

�B(�r, t) = ∇× �A =
i

c

∑
k,λ

ωk(k̂ × ε̂kλ)
[
Akλe

iθ −A∗
kλe

−iθ
]
= k̂ × �E(�r, t)

which shows that the three vectors �k, �E, and �B form a mutually orthogonal
set, with the fields being transverse to the propagation direction.

Since the energy is stored in the fields, it is given by

W =
1

8π

∫
V

(
�E · �E + �B · �B

)
dV

The expressions for
∫
�E · �E and

∫
�B · �B contain several terms, but volume

integrating and adding them together gives the simpler expression

W =
V

2π

∑
k,λ

ω2
kAkλA

∗
kλ

Before proceeding further, we will make the time variation implicit, so
that the expressions may be taken straight over to quantum mechanical
operator expressions in the Schrödinger picture, where operators (but not
their expectation values) are time independent.

Now define new variables:

Qkλ ≡
√
V/4π [Akλ +A∗

kλ] ∝ real part of Akλ

Pkλ ≡ −iωk

√
V/4π [Akλ −A∗

kλ] ∝ imaginary part of Akλ

(2.9)
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In terms of these variables

W =
1

2

∑
kλ

(
P 2
kλ + ω2

kQ
2
kλ

) ≡ HEM E-M field Hamiltonian

which looks like a harmonic oscillator Hamiltonian. Using HEM, one can
show that P and Q are canonical variables, and hence their time varia-
tions are

Q̇kλ =
∂HEM

∂Pkλ
= Pkλ and Ṗkλ = −∂HEM

∂Qkλ
= −ω2

kλQkλ

Therefore each mode of the radiation field is a harmonic oscillator. The
energy swaps between the electric and magnetic fields, analogous to the way
it swaps between kinetic and potential energies in a mechanical oscillator.

2. Quantization

Comparison of Eq. (2.2) with Eq. (2.9) shows that the role of the lower-

ing operator a in the quantum HO is played by the vector potential �A in
the radiation field. Therefore, quantization of the radiation fields is accom-
plished simply by replacing the Akλ and A∗

kλ in the classical expression for

the modes [Eq. (6.1)] by akλ and a†kλ, multiplied by
√
hc2/(ωkV ) to get the

normalization right in a box of volume V .∗ Thus the operator for the vector
potential is (here alone we use boldface to indicate that it is a quantum
mechanical operator)

�Akλ(�r) =

√
hc2

ωkV
ε̂kλ

[
akλe

i	k·	r + a†kλe
−i	k·	r

]
The operators for the associated �E and �B fields are

�Ekλ(�r) = i

√
hωk

V
ε̂kλ

[
akλe

i	k·	r − a†kλe
−i	k·	r

]
�Bkλ(�r) = i

√
hωk

V
(k̂ × ε̂kλ)

[
akλe

i	k·	r − a†kλe
−i	k·	r

]
Note that the operators �A, �E, and �B are all Hermitian, since they are
observables.

As an example of how we use this formalism, we calculate the expectation

∗This is equivalent to the quantization procedure followed for the harmonic oscillator,
but we choose this slightly different approach in order to make the role of �A explicit.
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value of the E field in a coherent state |α〉
〈 �E(�r, t)〉α ≡ 〈α(t)|�Ekλ(�r)|α(t)〉

= i

√
hωk

V
ε̂kλ

[
〈α(t)|akλ|α(t)〉 ei	k·	r − c.c.

]
= i

√
hωk

V
ε̂kλ

[
αei

	k·	r−ωt − c.c.
]

Therefore

〈 �E(�r, t)〉α = −2

√
hωk

V
ε̂kλ Im

{
αei(

	k·	r−ωt)
}

3. Zero-point energy and fields

Our quantization procedure for the radiation field now leads to a puzzling
set of infinities associated with the zero-point. This arises because of the
zero-point energy for the vacuum state of each of the infinitely many
modes of the field. The energy may be found using the operator for the
energy of a volume V filled with EM radiation, which is

W =
1

2

∑
k,λ

�ωk

(
akλa

†
kλ + a†kλakλ

)
The zero-point energy is the expectation value of W in the vacuum state

〈W 〉0 =
1

2

∑
k,λ

�ωk

which (not surprisingly) is the same as the zero-point energy for the quan-
tized harmonic oscillator in the |0〉 state. The total energy is infinite
because there are infinite modes that are allowed. But we can get a finite
value for this energy by defining a cut-off frequency ωc. Noting that the k
index is continuous and using the density of states ρ(ω), we have

∑
k

→
ωc∫
0

ρ(ωk)dωk and
∑
λ

= 2

Using ρ(ω) = V ω2/(π2c3), we get

W (ωc) =
�ω4

c

4π2c3
V

In the vacuum state the eigenvalue of the number operator is known (i.e.
nkλ = 0) so the fields must have non-zero variances to satisfy the uncer-
tainty principle (the number operator does not commute with the operators



46 Preliminaries

for the �E and �B fields). These are called the vacuum fluctuations of the

field. Since 〈 �E〉 = 0,

(Δ �E)2 = 〈 �E2〉 = hωk

V

For most purposes the zero-point energy and zero-point field fluctuations
can be neglected, as they almost invariably are. But we know that for a
single harmonic oscillator, e.g. a diatomic molecule, the zero-point energy is
real—it is responsible for the isotope shift in the binding energy of molecules
(the lowest vibrational state of the heavier isotopes nestles down a little bit
further into the potential). There are also other pieces of evidence for
the reality of the vacuum fluctuations of the fields. For example, we have
already seen that it is possible not only to detect the field fluctuations
using an optical homodyne detector, but to reduce them by replacing the
normal vacuum with squeezed light. In addition, our present “model” for
spontaneous emission from the excited state of an atom is really stimulated
emission, but one where the stimulation is by the vacuum fields. That is
why spontaneous emission is not present in the semiclassical model where
we do not quantize the radiation fields. One consequence of this model is
that the spontaneous emission rate can be reduced, e.g. by suppressing the
vacuum modes by placing the atom in a photonic bandgap material, or by
using a control laser on an auxiliary transition, both of which have been
demonstrated.

Another example of the reality of the vacuum field fluctuations is Unruh
radiation—a mirror accelerating at a scatters the vacuum fluctuations pro-
ducing radiation with a characteristic temperature of �a/2πckB. Future
experiments may be able to observe this in spite of its small size. For a
mirror accelerating from zero to c in 3 ps, a = 1013 m/s2 and the tempera-
ture is 0.04 K; obviously a non-physical mirror such as the edge of a plasma
breakdown must be used. Incidentally, an analogous process in which a
moving object scatters zero-point acoustic fluctuations is one answer to the
Zen question “What is the sound of one hand clapping?”!

However real the zero-point energy may seem in certain cases, there is
good justification for ignoring it. This is provided by the lack of observed
gravitational effect—the zero-point energy (divided by c2) around the Sun
would act as a spherically symmetric mass density and would cause a devia-
tion from the GM/r gravitational potential, something which is accurately
inferred from planetary motion.
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4. Casimir effect

Though the previous discussion raises some questions about the reality of
the zero-point energy and fields, changes in these quantities are definitely
observable. One such manifestation is the Casimir force—a long range
force among any pair of atoms, electrons, or walls (conducting or dielectric).
In the case of two conducting walls, the exclusion of some of the vacuum
modes in the region between the two planes leads to a position-dependent
change in the vacuum energy and hence to a force.

Figure 2.10: Casimir force between conducting walls arising due to ex-
clusion of vacuum modes. The boundary condition on the walls implies
that only standing waves of the form shown are allowed, while outside all
modes are allowed.

To see this quantitatively, we assume that the two conducting walls have
size Ly = Lz = L, and separation Lx = d, as shown in Fig. 2.10. The
boundary condition on the walls implies that the electric field is zero there;
therefore the only allowed waves between the walls are standing waves of
the form (similar to the modes in a string held between two rigid points)

sin knx with kn = nπ/d

which forms a discrete set. Outside the walls all modes are allowed. This
difference of vacuum modes leads to the Casimir force. Even though the
total energy on both sides is infinite, the difference is finite and can be
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derived as

ΔW = − π2
�c

720 d3
L2

This implies that the force per unit area is

FCasimir = − 1

L2

∂ΔW

∂d
=

π2

240

�c

d4

which shows that the force scales as d−4. To give an idea of its size, it is
1.3× 10−3 N/m2 at a distance of 1 μm.
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F. Problems

1. An electron on a spring

Consider a model of an atom as an electron on a spring.

(a) Use Larmor’s expression for the power radiated (PL = 2a2/3c3) to find
the energy damping rate for this oscillator Γ.

(b) Find the Q and express it in atomic units.

(c) For λ = 589 nm (Na D lines), find Q and the corresponding decay time
of the atom.

Solution

(a) The position of the electron is given by

x(t) = A sinωt

where A is the amplitude of the motion. This gives

ẋ = Aω cosωt

ẍ = −Aω2 sinωt

ẍ = a =⇒ a2 = A2ω4 sin2 ωt

If Q 	 1, the above expressions are true even in the presence of radi-
ation damping, because the amplitude does not change significantly in
one cycle.

Average of sin2 θ over a cycle is

1

2π

∫ 2π

0

sin2 θ dθ =
1

2π

∫ 2π

0

1− cos 2θ

2
dθ =

1

2π

[
θ

2
− sin 2θ

4

]2π
0

=
1

2

Therefore

〈a2〉 = 1

2
A2ω4 =⇒ 〈PL〉 = 2e2

3c3
A2ω4

2

Energy stored in the oscillator is mω2A2/2. Therefore the damping
rate is

Γ =
Power lost

Energy stored
=

2ω2e2

3c3m
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(b) The Q of the oscillator is

Q =
ω

Γ
=

3c3m

2ωe2
=

3

4πα2

(
λ

a◦

)
← in atomic units

where the term in brackets is the wavelength of the radiation in units
of the Bohr radius.

(c) For λ = 589 nm = 11130.5 a◦,

ω = 3.19× 1015 rad/s

Q = 4.99× 107

τ =
1

Γ
=

Q

ω
= 1.563× 10−8 s

2. Quantum harmonic oscillator

Consider a one-dimensional harmonic oscillator of mass m and frequency ω
which is in number state |n〉.

(a) Find both the average and rms position and momentum (four things
in all).

(b) Check your results using energy and the virial theorem.

(c) Sketch the wavefunction ψn(x) for n = 0 and 1.

(d) If a Na atom is confined in the |0, 0, 0〉 state of a trap with oscillation
frequency ω = 2π × 102 rad/s, what is its rms size and velocity?

Solution

(a) The operators for position and momentum are

X =

√
�

2mω

(
a† + a

)
/2

P = i

√
m�ω

2

(
a† − a

)
/2

This shows that 〈n|X |n〉 = 〈n|P |n〉 = 0, i.e.

average position = 0

average momentum = 0
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In order to find the rms values of position and momentum, we note
that

〈(ΔX)2〉 = 〈n|X2|n〉 − (〈n|X |n〉)2 = 〈n|X2|n〉
〈(ΔP )2〉 = 〈n|P 2|n〉 − (〈n|P |n〉)2 = 〈n|P 2|n〉

Using

X2 =
�

2mω

(
a†2 + aa† + a†a+ a2

)
P 2 = −m�ω

2

(
a†2 − aa† − a†a+ a2

)
and with

〈n|aa† + a†a|n〉 = 〈n|2a†a+ 1|n〉 = 2n+ 1

we get the rms values as

xrms ≡ 〈ΔX〉 =
√

�

mω

(
n+

1

2

)

prms ≡ 〈ΔP 〉 =
√
m�ω

(
n+

1

2

)

(b) According to virial theorem for a potential V ∼ x2, we have 〈V 〉 =
〈K〉 = E/2, where

〈V 〉 = 1

2
mω2 〈X2〉 and 〈K〉 = 1

2m
〈P 2〉

From part (a) we see that

〈V 〉n =

(
n+

1

2

)
�ω

2
=

En

2

〈K〉n =

(
n+

1

2

)
�ω

2
=

En

2

which shows that the previous results are consistent with the virial
theorem.

(c) Defining σ =
√
�/(mω), we have

ψ0(x) =

(
1

σ
√
π

)1/2

exp

(
− x2

2σ2

)
ψ1(x) =

(
2

σ
√
π

)1/2
x

σ
exp

(
− x2

2σ2

)
These two wavefunctions are sketched in the figure below.
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(d) For n = 0, the results of part (a) show that

rms size ≡ qrms =

√
�

2mω

rms velocity ≡ prms

m
=

√
�ω

2m

For a particle in a state with nx = ny = nz = 0

rms size =
√
x2
rms + y2rms + z2rms =

√
3 qrms =

√
3�

2mω

rms velocity =
√
v2x,rms + v2y,rms + v2z,rms =

√
3
prms

m
=

√
3�ω

2m

Na has mass of 23 amu = 3.8× 10−26 kg, so with ω = 2π × 102 rad/s
the values are

rms size = 2.6× 10−6 m

rms velocity = 1.6× 10−3 m/s
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3. Damping in a driven harmonic oscillator

Explain qualitatively and physically. When driven far from resonance the
power dissipated in a classical damped oscillator increases linearly with the
damping Γ, but on resonance it varies as Γ−1. Why does reducing the
damping increase the power dissipated on resonance?

Solution

The amplitude of the response of a driven oscillator is

A(ω) =
Fd/m√

(ω2◦ − ω2)2 + Γ2ω2
≈ Fd/(2mω◦)√

(ω − ω◦)2 + (Γ/2)2

with the approximate result obtained by expansion near resonance (ω ≈ ω◦),
valid for a high Q oscillator.

The power dissipated is given by

Pdis = 〈Fdamping v〉

The damping force is

Fdamping = 2mΓω◦ v

therefore the power dissipated becomes

Pdis = 〈2mΓω◦ ẋ ẋ〉 ∼ A2 Γ

Far from resonance |ω−ω◦| 	 Γ/2 the amplitude is independent of Γ, and
the power dissipated varies as Γ because

Pdis ∼ A2 Γ ∼ Γ

But on resonance when ω − ω◦ = 0, the amplitude varies as 2/Γ and the
power dissipated varies as 1/Γ because

Pdis ∼ A2 Γ ∼ 1

Γ2
Γ ∼ 1

Γ

Qualitatively, this happens because the drive causes the response on res-
onance to increase to the point where it compensates for the damping.
Therefore reducing the damping increases the response which then causes
the power dissipated to increase. In the limit of no damping, the power
dissipated diverges to infinity whereas off-resonance it goes to zero—i.e.
becomes a Dirac delta function.
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4. Squeezing operators

The generalized raising and lowering operators for producing squeezed states
are

b = a cosh r − a†e2iθ sinh r

b† = a† cosh r − ae−2iθ sinh r

Show that they satisfy the commutator relation
[
b, b†

]
= 1.

Solution

The commutator of the squeezing operator is calculated as[
b, b†

] ≡ bb† − b†b

= aa† cosh2 r − a2e−2iθ cosh r sinh r

− a†2e2iθ cosh r sinh r + a†a sinh2 r

− a†a cosh2 r + a†2e2iθ cosh r sinh r

+ a2c−2iθ cosh r sinh r − aa† sinh2 r

= aa†
(
cosh2 r − sinh2 r

)− a†a
(
cosh2 r − sinh2 r

)
= aa† − a†a

=
[
a, a†

]
= 1
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5. Squeezed states

(a) Find the expected number of photons in the squeezed vacuum state as
a function of r and θ.

(b) Find the expected numbers of photons in a coherently displaced squeezed
state with α, r, and θ.

Solution

(a) Since we are working with eigenstates of the Hamiltonian expressed in
terms of b, we want to express the number operator N in terms of b.

The definitions of b and b† are

b = a cosh r − a†e2iθ sinh r

b† = a† cosh r − ae−2iθ sinh r

Multiplying these two equations by the appropriate factors and adding
gives

b cosh r + b†e2iθ sinh r = a
(
cosh2 r − sinh2 r

)
= a

Thus a and a† satisfy

a = b cosh r + b†e2iθ sinh r

a† = b† cosh r + be−2iθ sinh r

and the number operator is

N ≡ a†a

= b†b cosh2 r + b2e−2iθ cosh r sinh r

+ b†2e2iθ cosh r sinh r + bb† sinh2 r

The only term that will give a non-zero result is the bb† term. Thus
the number of photons in the squeezed vacuum is

〈0b|N |0b〉 = 〈0b|bb† sinh2 r|0b〉 = sinh2 r

The result is independent of θ because the number of photons in the
vacuum state does not depend on the angle of squeezing.

(b) The coherently displaced squeezed vacuum state is

|α, 0b〉 = D(α) |0b〉
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where

D(α) = exp
(
αa† − α∗a

)
= exp

(
αb† cosh r + αbe−2iθ sinh r − α∗b cosh r − α∗b†e2iθ sinh r

)
= exp

[
b†

(
α cosh r − α∗e2iθ sinh r

)− b
(−αe−2iθ sinh r + α∗ cosh r

)]
= exp

(
βb† − β∗b

)
with β defined as

β ≡ α cosh r − α∗e2iθ sinh r

This shows that

D(α) |0b〉 = D′(β) |0b〉 ≡ |βb〉
Hence the |βb〉 states are analogous to the |α〉 states, i.e. they are
eigenstates of b with eigenvalue β.

The average number of photons in this state is

〈n〉β = 〈βb|a†a|βb〉
From part (a) and using the commutator relation for b, we have

a†a = b†b cosh2 r + b2e−e2iθ cosh r sinh r

+ b†2e2iθ cosh r sinh r +
(
1 + b†b

)
sinh2 r

Therefore

〈n〉β = |β|2 cosh2 r + β2e−2iθ cosh r sinh r

+ (β∗)2 e2iθ cosh r sinh r + sinh2 r + |β|2 sinh2 r
From the definition of β we have

|β|2 = αα∗ cosh2 r + αα∗ sinh2 r

− α2e−2iθ sinh r cosh r − (α∗)2e2iθ sinh r cosh r

β2 = α2 cosh2 r + (α∗)2e2iθ sinh2 r − 2αα∗e2iθ sinh r cosh r

Substituting into the equation for 〈n〉, we get

〈n〉β = sinh2 r + αα∗
[(
cosh2 r + sinh2 r

)2 − 4 cosh2 r sinh2 r
]

= sinh2 r + αα∗ (cosh2 r − sinh2 r
)2

= sinh2 r + |α|2

which as expected reduces to the vacuum value when α = 0.
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6. Size of zero-point energy

(a) Calculate the zero-point energy in a cubic cavity of length L on each
side if you stop the integral (arbitrarily) at wave vector kc.

(b) Find a numerical result for kc = 2π × 20 000 cm−1.

(c) What would be the electric field E associated with this energy density?

(d) Approximately what would be the force on one of the walls of a 1 m3

cube if radiation with this energy density is present inside the cube?

(Hint: How are pressure and energy related for a photon gas?)

Solution

(a) Zero-point energy for each mode of the radiation field is

E0 =
1

2
�ω =

1

2
�ck

Density of states in k space is

Ω(k) =

(
L

2π

)3

4πk2 × 2

↑ for spin

=
L3

π2
k2

Therefore the energy up to a cut-off wavevector kc is

E =

∫ kc

0

E0(k)Ω(k) dk

=

∫ kc

0

1

2
�ck

L3

π2
k2 dk =

�c

2π2
L3 k

4

4

∣∣∣∣kc

0

=
�c

8π2
L3k4c

and the energy density is

E

V
=

E

L3
=

�c

8π2
k4c

(b) For kc = 2π × 20 000 cm−1 we have

E

V
= 9.989 J/m3
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(c) Equating the above energy density to that in an electrostatic field we
get

U =
E2

8π
= 9.985 =⇒ E = 1585 V/cm

(d) Radiation pressure due to a photon gas is E/(3V ), therefore

F = p×A =
E

V

L2

3
= 3.33 N



Chapter 3

Atoms

A
toms are the building blocks of matter. But they serve an even more im-
portant role in atomic physics since they are not only objects to study

and understand as deeply as possible, but also in the words of I. I. Rabi,
“Nature’s laboratory,” where you can study the interaction of electrons and
nucleus, the interaction of matter and radiation, or very weak interactions
(e.g. parity or time-reversal symmetry violation) with exquisite precision.
In this chapter, we shall use the phrase “one-electron atom” to include not
only atoms which are iso-electronic with hydrogen (such as He+, Li++, etc.),
but also atoms with one-electron which is far less weakly bound than all the
others so that the inner electrons may be considered collectively as a core
whose interaction with the active electron may be adequately described by
parameters such as scattering length, polarizability, etc.

We will study the structure—energy levels and matrix elements—of atoms,
both in zero field and in static electric and magnetic fields separately. The
emphasis will be on providing a brief catalog of the physics of atomic struc-
ture and the field-induced changes in this structure. The dynamics of tran-
sitions induced by a time-varying electric field will be covered in later chap-
ters, but we shall discuss the energy levels of an atom in an oscillating field
here—the dressed atom—for use later on.

59
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A. Spectroscopic notation

Neutral atoms consist of a heavy nucleus with positive charge Z, surrounded
by Z electrons with negative charge. Positively charged atomic ions gen-
erally have structure similar to the neutral atom with the same number
of electrons except for a scale factor; negatively charged ions lack the at-
tractive Coulomb interaction at large electron-core separation and typically
have only one bound state. Thus the essential feature of an atom is its num-
ber of electrons, and their mutual arrangement as expressed in the quantum
numbers.

An isolated atom has two good angular momentum quantum numbers, J
and mj .

∗ In zero external field, the atomic Hamiltonian possesses rota-
tional invariance, which implies that each J level is degenerate with respect
to the 2J + 1 states for the different values of mj — traditional spectro-
scopists refer to these states as “sublevels.” (This also makes it clear that
the word “level” is used for an energy eigenstate which has possible degen-
eracy because of unspecified quantum numbers, whereas the word “state”
is used to refer to an eigenstate with distinct quantum numbers which are
different from others.) For each J and mj , an atom will typically have a
large number of discrete energy levels (plus a continuum) which may be
labeled by other quantum numbers. If Russel–Saunders coupling (LS cou-
pling) is a good description of the atom, then the quantum numbers for the
following vector operators in an N electron atom

�L ≡
N∑
i=1

�Li and �S ≡
N∑
i=1

�Si

are nearly good quantum numbers and may be used to distinguish the levels.
In this case the level is designated by a

Term symbol 2S+1LJ

where 2S + 1 and J are written numerically, and L is designated with the
following letter code

L : 0 1 2 3 4 . . .

Letter : S P D F G . . .

The first four letters stand for Sharp, Principal, Diffuse, and Fundamental—
adjectives that apply to the spectral lines of one-electron atoms as recorded
by a spectrograph. The term symbol is frequently preceded by the n value of
the outermost electron. In addition, when dealing with one-electron atoms,
it is customary to omit the 2S+1 superscript, with the understanding that

∗This is strictly true only for atoms whose nuclei have spin I = 0. However, J is never
significantly destroyed by coupling to I in ground state atoms.
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it is equal to 2. Thus the term symbol for the ground state of Na is written
as 3 S1/2, where the subscript 1/2 tells us that it is a one-electron atom.

The preceding discussion of the term symbol was based on an external
view of the atom. Alternatively, one may have or assume knowledge of
the internal structure—the quantum numbers of each electron. These are
specified as the

Configuration 1s22s22p2 . . .

i.e. a series of symbols of the form n�m, which represents m electrons in
the orbital n�. n is the principal quantum number and characterizes the
radial motion, which has the largest influence on the energy. n and m are
written numerically, but the s, p, d, f, . . . coding is used for � (lowercase for
the lowercase �). As an example, the configuration for Ca is 1s22s22p33s3d,
which is frequently abbreviated as . . . 3d. In general, each configuration
leads to several terms which may be split apart by several eV—e.g. the
above Ca configuration gives rise to terms 1D2 and 3D1,2,3.

In classifying levels, the term is generally of more importance than the con-
figuration because it determines the behavior of the atom when it interacts
with external electric or magnetic fields.∗ Furthermore the configuration
may not be pure—if two configurations can give rise to the same term (and
have the same parity) then intra-atomic electrostatic interactions will mix
them together. This process, called configuration interaction, results in
shifts in the level positions and intensities of spectral lines from terms which
interact, and also in correlations in the motions of the electrons within the
atoms.

∗By contrast, selection rules, as we will see in Chapter 6, “Interaction,” only deal with
changes in internal states, such as ΔJ .
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B. Energy levels of one-electron atoms

In trying to understand some new phenomenon for the first time, it is
common sense and good science to study it in the simplest situation where
it is manifest—alas, this ideal situation is frequently discernible only by
intuition until the phenomenon is understood! With atoms it is evident that
hydrogen is of paramount simplicity and historically most fundamental
physics which has been discovered in atoms has been discovered in hydrogen,
though Na, Rb, and other alkali atoms have taken over since tunable lasers
arrived.

1. Bohr atom

Balmer’s empirical formula of 1885 had reproduced Angstrom’s observa-
tions of spectral lines in hydrogen to 0.1 Å accuracy, but it was not until
1913 that Bohr gave an explanation for this based on a quantized mechan-
ical model of the atom. This model is historically important because it is
simple enough to be taught in high school, and provided the major impetus
for developing quantum mechanics. It involves the following Postulates
of Bohr Atom:

(i) Electron and proton are point charges whose interaction is Coulombic
at all distances.

(ii) Electron moves in circular orbits about the center of mass in station-
ary states with orbital angular momentum L = n�.

These two postulates give the energy levels (with −ve sign showing
that these are bound states)

En = −1

2

[
me4

�2

mp

m+mp

]
1

n2
= −RH

n2

where the factor involving mp comes because of the reduced mass

μ ≡ mmp

m+mp

RH is the Rydberg in hydrogen =
mp

m+mp
R∞

(iii) One quantum of radiation is emitted when the system changes be-
tween two of these energy levels.

(iv) Its wavenumber is given by the Einstein frequency criterion

νn→m =
En − Em

hc

Note that the wavenumber is the number of wavelengths per cm: ν =
ω/(2πc) = k/2π, where k is the usual wavevector.
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The mechanical spirit of the Bohr atom was extended by Sommerfeld in
1916 using the Wilson–Sommerfeld quantization rule∮

pidqi = nih

where qi and pi are conjugate coordinate and momentum pairs for each
degree of freedom of the system. This extension yielded elliptical orbits
which were found to have energy nearly degenerate with respect to the or-
bital angular momentum for a particular value of the principal quantum
number n. The dependency was lifted only by a relativistic correction, and
the splitting was in agreement with the observed fine structure of hydro-
gen. Although triumphant in hydrogen, simple mechanical models of two
electron atoms which reproduced reality could not be developed during the
following decade and further progress in understanding atoms required the
development of quantum mechanics, as discussed in the next section.

2. Radial Schrödinger equation for central potentials

The quantum mechanical problem in an atom consists of solving the follow-
ing Time dependent Schrödinger equation

i�
∂ψ(�r, t)

∂t
= H(�r)ψ(�r, t)

Stationary solutions are obtained by the substitution

ψ(�r, t) = e−iEnt/�ψn(�r)

where n stands for all quantum numbers necessary to label the state. This
leads to the Time independent Schrödinger equation

[H(�r)− En]ψ(�r) = 0

The most important and pervasive application of this equation in atomic
physics is to the case of a one particle system of mass μ in a spherically
symmetric (or isotropic) potential. Such potentials are called central po-
tentials because they only depend on the scalar distance from a center of
force, as typified by the Coulomb force in an atom. In mathematical terms,
V (�r) = V (r). In such a case, the Hamiltonian is

H ≡ Kinetic Energy + Potential Energy

=
P 2

2μ
+ V (r)

= −�
2∇2

2μ
+ V (r)

= − �
2

2μ

[
1

r2
∂

∂r

(
r2

∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2

]
+ V (r)
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where in the last line the kinetic energy operator ∇2 has been written in
spherical coordinates. Since V is spherically symmetric, the angular depen-
dence of the solution is characteristic of spherically symmetric systems in
general and may be factored out

ψn�m(�r) = Rn�(r)Y�m(θ, φ)

where Y�m’s are the Spherical Harmonics, with � being the eigenvalue of
the vector operator for the orbital angular momentum �L

�L2 Y�m = �(�+ 1)�2 Y�m

and m being the eigenvalue of the projection of �L on the quantization axis
(which may be chosen at will)

Lz Y�m = m�Y�m

Figure 3.1: Shapes of the first three hydrogen orbitals in θφ space as
determined by the spherical harmonics Y�m’s. Each one has parity (−1)�,
2�+ 1 components, and a node at the origin except for the � = 0 case.

The shapes of the first three orbitals—corresponding to � = 0, 1, 2—are
shown in Fig. 3.1.

Substitution of Y�m into ψn�m(�r) leads to the Time independent radial
Schrödinger equation (remember Rn� is only a function of r)

1

r2
d

dr

(
r2

dRn�

dr

)
+

2μ

�2
[En� − V (r)]Rn� − �(�+ 1)

r2
Rn� = 0
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This is the equation which is customarily solved for the hydrogen atom’s
radial wave functions.

For many applications (e.g. scattering by a central potential, diatomic
molecules) it is convenient to make a further substitution

Rn�(r) =
yn�(r)

r

which leads to

d2yn�(r)

dr2
+

2μ

�2

[
En� − V (r)− �

2�(�+ 1)

2μr2

]
yn�(r) = 0 (3.1)

with the boundary condition yn,�(0) = 0.

This equation is identical with the time independent Schrödinger equation
for a particle of mass μ in an effective one-dimensional potential

Veff(r) = V (r) +
�L2

2μr2
= V (r) +

�
2�(�+ 1)

2μr2

The additional term is called the Centrifugal barrier and is a pseudo-
potential that arises because we are in a non-inertial rotating frame.

3. Radial equation for hydrogen

For hydrogen, Eq. (3.1) becomes

d2yn�(r)

dr2
+

2μ

�2

[
En +

e2

r

]
yn�(r) − �(�+ 1)

r2
yn�(r) = 0 (3.2)

We first consider the limit r → 0. Then the dominant terms lead to the
simplified equation

d2yn�
dr2

− �(�+ 1)

r2
yn� = 0

for any value of En. It is easily verified that the two independent solutions
are yn� ∼ r�+1 and yn� ∼ r−�. For � ≥ 1, the only physically acceptable
(i.e. normalizable) solution is

yn� ∼ r�+1 (3.3)

Next, we look at the limit r → ∞. We may investigate the simpler equation
if the potential falls to zero sufficiently rapidly, i.e. lim

r→∞V (r) = 0. Then,

for large r

d2yn�
dr2

+
2μEn

�2
yn� = 0
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For En > 0, this equation has oscillating solutions corresponding to a free
particle, which are important in scattering problems.

For En < 0, the equation has exponential solutions, but only the decaying
exponential of the following form is normalizable

Rn�(r) =
yn�(r)

r
=

1

r
e−r

√
−2μEn/�2

(3.4)

When En < 0, it is possible to obtain physically reasonable solutions to Eq.
(3.1)—or indeed any bound state problem—only for certain discrete values
of En called eigenvalues. This situation arises from the requirement that
the solution be square integrable (i.e.

∫∞
0

y2n�(r)dr is finite); obviously Eq.
(3.1) is a prescription for generating a function yn�(r) for arbitrary En < 0
given yn� and dyn�/dr at any point. To obtain a normalizable solution one
can proceed as follows:

(i) Starting at large r, a “solution” of the form of (3.4) is selected and
extended to some intermediate value of r, say rm, using a trial value
of En < 0.

(ii) At the origin one must select the solution of the form yn� ∝ r�+1 from
(3.3); this “solution” is then extended out to rm.

(iii) The two “solutions” may be made to have the same value at rm by
multiplying one by a constant; however, the resulting function is a
valid solution only if the first derivative is continuous at rm, and this
occurs only for a discrete set of values of En�.

The procedure described above is, in fact, the standardNumerov–Cooley
technique for finding bound states with digital computers; its most elegant
feature is a rapidly converging procedure for adjusting the trial eigenenergy
using the discontinuity in the derivative.

For the hydrogen atom, the eigenvalues can be determined analytically
because the substitution

yn�(r) = r�+1e−r
√

−2μEn/�2

v�(r)

leads to a particularly simple equation if one also changes the variable from
r to x

x = 2r
√
−2μEn/�2

so the exponential becomes e−x/2. Defining the constant

ν =
�

a◦
√−2μEn

= α

√
μc2

−2En
(3.5)
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(with α and a◦ as defined earlier), Eq. (3.2) in terms of x becomes[
x
d2

dx2
+ (2�+ 2− x)

d

dx
− (� + 1− ν)

]
v� = 0 (3.6)

This is a Laplace equation, and its solution is a confluent hypergeometric
series. To find the eigenvalues one now tries a Taylor series expansion for
v�

v�(x) = 1 + a1x+ a2x
2 + . . .

This satisfies Eq. (3.6) only if the coefficients of each power of x are satisfied,
i.e.

x0 : (2�+ 2)a1 − (�+ 1− ν) = 0

x1 : 2(2�+ 3)a2 − (� + 2− ν)a1 = 0

xp−1 : p(2�+ 1 + p)ap − (� + p− ν)ap−1 = 0

The first line fixes a1, the second then determines a2, and last line gives
the general coefficient as

ap =
(� + p− ν)

p(2�+ 1 + p)
ap−1

The above expression will give a p+n coefficient on the order of 1/p! so that

v�(x) ∼
∞∑
p=0

xp

p!
= ex

This spells disaster because it means that yn� = r�+1e−x/2v�(r) diverges.
The only way in which this can be avoided is if the series truncates, i.e. if
ν is an integer

ν = n = n′ + �+ 1 n′ = 0, 1, 2, . . .

so that all the coefficients ap for p ≥ (n′ + 1) will be zero. Since n′ ≥ 0 it
is clear that you must look at an energy level n ≥ �+1 to find a state with
angular momentum � (e.g. the 2d configuration does not exist).

This gives the eigenvalues of hydrogen from Eq. (3.5) as

En = −1

2
α2μc2

1

(n′ + �+ 1)2

= −1

2

μe4

�2

1

n2

= −RH

n2

which agrees with the Bohr formula.
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4. One-electron atoms with cores — Quantum defect

(i) Phenomenology

It is observed that the eigenvalues of atoms which have one valence electron
have the same density as those of hydrogen, but not the same positions. If
one defines an effective quantum number

n∗ =
√
R/En

such that the Bohr formula will reproduce the energy levels of a particular
term, it is found that the n∗ values for adjacent levels differ by almost
exactly 1.000, especially after the first few terms. Thus the quantum
defect is defined as

δ� ≡ n− n∗

where n is the principal quantum number of the valence electron for that
term.∗ It remains very constant with respect to n, but decreases rapidly
with respect to �.

A more accurate empirical formula for the term values of a series is the
Balmer–Ritz formula

Tn =
Z2R

(n− δ� − β�/n2)2
(3.7)

When comparing x-ray spectra of isoelectronic ions, a useful empirical for-
mula was suggested by Moseley

Tn =
(Z − δZ)2R

n2

in which the charge is adjusted, rather than n. δZ may be regarded as the
amount of charge shielded by the core.

(ii) Explanation

It must always be kept in mind that the quantum defect is a phenomeno-
logical result. To explain how such a simple result arises is obviously an
interesting challenge, but it is not to be expected that the solution of this
problem will lead to great new physical insight. The only new results
from understanding quantum defects in one-electron systems are the connec-
tion between the quantum defect and the electron scattering length for the
same system which may be used to predict low-energy electron scattering

∗If you do not know n, the use of the next larger integer than n∗ still leads to useful
results.
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cross-sections, and the simple expressions relating δ� to the polarizability of
the core for larger δ�. The principal use of the quantum defect is to predict
the positions of higher terms in a series for which δ� are known.

Explanations of the quantum defect range from the elaborate fully quantal
explanation of Seaton, to the extremely simple treatment of Parsons and
Weisskopf. P&W assume that the electron cannot penetrate inside the core
at all, but use the boundary condition R(rc) = 0 which requires relabeling
the lowest ns state to 1s since it has no nodes outside the core. This
viewpoint has a lot of merit because the exclusion principle and the large
kinetic energy of the electron inside the core combine to reduce the amount
of time it spends in the core. This is reflected in the true wavefunction
which has n nodes in the core and therefore never has a chance to reach a
large amplitude in this region.

To show the physics without much math (or rigor) we turn to the JWKB
solution to the radial Schrödinger equation. Defining the wavenumber as

k�(r) =

√
2m[E − Veff(r)]

�
(remember Veff depends on �)

the phase accumulated in the classically allowed region is

φ�(E) =

∫ ro

ri

k�(r)dr

where ri and ro are the inner and outer turning points.

Bound state eigenvalues are found by setting∗

[φ�(E)− π/2] = nπ =⇒ φ�(E) = (n+ 1/2)π (3.8)

The Bohr formula permits us to evaluate the accumulated phase for hydro-
gen

φ�H(E) = π
√
RH/E + π/2 independent of �

In the spirit of the JWKB approximation this is regarded as a continuous
function of E.

Now consider a one-electron atom with a core of inner electrons which lies
entirely within rc. Since it has a hydrogenic potential outside of rc, its
phase can be written as

φ�(E) =

∫ roH

ri

k�(r) dr

=

∫ rc

ri

k�(r) dr +

∫ roH

rc

k�H(r) dr

=

∫ rc

ri

k�(r) dr −
∫ rc

riH

k�H(r) dr +

∫ roH

riH

k�H(r) dr

∗The π/2 comes from the connection formulae and would be 1/4 for � = 0 states where
ri = 0. Fortunately it cancels out.
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where riH and roH are the corresponding turning points in hydrogen.

The last integral is the phase accumulated by an equivalent hydrogen atom,
which is by definition (n∗ + 1/2)π. If we designate the sum of the first two
integrals as Δφ, then Eq. (3.8) allows us to rewrite the above equation as

(n+ 1/2)π = Δφ + (n∗ + 1/2)π =⇒ Δφ = πδ�(E)

Hence the total phase accumulated is related to the quantum defect as
follows

φ�(E) = πδ�(E) + φ�H(E)

The defect δ� may be expanded in a power series in E

δ�(E) = δ
(0)
� + δ

(1)
� E + . . .

noting that the turning points are determined by E + Veff(r) = 0 so that
δ� approaches a constant as E → 0.

Now we can find the bound state energies for the atom with a core. Starting
with Eq. (3.8)

nπ = φ�(E)− π/2

= πδ�(E) + π
√
RH/E

we get

E =
RH

[n− δ�(E)]2
≈ RH

[n− δ
(0)
� − δ

(1)
� RH/n2]2

Thus we have explained the Balmer–Ritz formula of Eq. (3.7).

If we look at the radial Schrödinger equation for the electron-ion core sys-
tem in the region where E > 0 we are dealing with the scattering of an
electron by a modified Coulomb potential. Intuitively one would expect
that there would be an intimate connection between the bound state eigen-
value problem described earlier and this scattering problem, especially in
the limit E → 0 (from above and below). Since the quantum defects char-
acterize the bound state problem accurately in this limit one would expect
that they should be directly useful in the scattering phase shifts σ�(k) (k
is the momentum of the free particle) which obey

lim
k→0

cot[σ�(k)] = πδ0� (3.9)

This has great intuitive appeal: πδ0� as discussed above is precisely the
phase shift of the wave function with the core present relative to the one
with V = e2/r. On second thought Eq. (3.9) might appear puzzling since
the scattering phase shift is customarily defined as the shift relative to the
one with V = 0. The resolution of this paradox lies in the long range nature
of the Coulomb interaction; it forces one to redefine the scattering phase
shift to be the shift relative to a pure Coulomb potential.
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C. Interaction with magnetic fields

In this section we study the interaction of the electron’s orbital and spin
angular momentum with an external static magnetic field. In addition we
consider the spin-orbit interaction: the coupling of electron spin to the
magnetic field generated by the nucleus (which appears to move about the
electron in the electron’s rest frame). The spin-orbit interaction causes
the orbital and spin angular momenta of the electron to couple together
to produce a total angular momentum which then couples to the external
field; the magnitude of this coupling is calculated for weak external fields.

1. Magnetic moment of circulating charge

The energy of interaction of a magnetic moment �μ with a magnetic field �B
is

U = −�μ · �B
indicating that the torque tends to align the moment along the field. In
classical electrodynamics, the magnetic moment of a moving point particle
about some point in space is independent of the path which it takes, but
depends only on the product of ratio of its charge to mass and angular
momentum. This result follows from the definitions of

Angular Momentum �L ≡ �r × �p = m[�r × �v]

Magnetic Moment �μ ≡ 1

2c
�r ×�i =

q

2c
[�r × �v]

where �v is the velocity and �i is the current. The equality of the bracketed
terms implies

�μ =
q

2mc
�L ≡ γ�L (3.10)

where γ is referred to as the gyromagnetic ratio.

For an electron with orbital angular momentum �L

�μ� =
−e

2mc
�L ≡ −μB

�

�L

where μB is the

Bohr magneton μB =
e�

2mc
= 1.39983 MHz/G

Note that the electron moment is negative, which is indicated by putting a
− sign in front.
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2. Intrinsic electron spin and moment

When Uhlenbeck and Goudsmit suggested that the electron had an intrinsic
spin s = 1/2, it soon became apparent that it had a magnetic moment twice
as large as would be expected on the basis of Eq. (3.10).∗ This is accounted
for by writing

Intrinsic Electron Moment �μs = −gsμB
�S/�

where the quantity gs is called the electron g factor or the spin gyromag-
netic ratio, and the minus sign again showing that the moment is negative
with a positive g. The value of gs was predicted to be 2 by the Dirac theory,
probably its greatest triumph.

Later experiments by Kusch, by Crane et al., and by Dehmelt and coworkers
have shown that (for both electrons and positrons) the value is slightly
larger, the result being called the anomalous magnetic moment of the
electron

gs/2 = 1. 0 0 1 1︸ ︷︷ ︸
Kusch

Crane︷︸︸︷
5 9 6 2 0︸︷︷︸

Dehmelt

. . .

This result must be explained using quantum electrodynamics (QED), which
gives

gs/2 = 1 + 1/2
[α
π

]
− 0.3258

[α
π

]2
+ 0.13

[α
π

]3
+ . . .

Note that each successive term has a higher power of the fine structure
constant α, and is therefore roughly 100 times smaller. This shows both
the importance of α in QED, and that it is a perturbative theory with
progressively smaller corrections.

∗This implies that the electron cannot be made out of material with a uniform ratio of
charge to mass.
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3. Spin-orbit interaction

The existence of intrinsic magnetic moment for the electron implies that it
will interact with any magnetic field present in an atom. One such field
arises from the motion of the electron through the Coulomb field of the
nucleus.

�Bmot =
1

c
�E × �v Electrodynamics

=
1

c

Ze

r3
�r × �v =

1

c

Ze

mr3
(�r × �p) �E field of nucleus

=
Ze

mc

1

r3
�L Definition of �L

However, there is another contribution to the magnetic field arising from
the Thomas precession . The relativistic transformation of a vector between
two moving coordinate systems with a relative acceleration �a between them
involves not only a dilation but also a rotation. The rotation is called
Thomas precession, and its rate is given by

�ΩThomas =
1

2

�a× �v

c2

Thus the precession vanishes for co-linear acceleration. However, it is non-
zero for a vector moving around a circle, as in the case of the spin vector of
the electron as it circles the proton. From the point of view of an observer
fixed to the nucleus, the precession of the electron is identical to the effect
of a magnetic field

�BThomas =
�

gsμB

�ΩThomas = −1

2

Ze

mc

1

r3
�L

where we have used that the acceleration of the electron is −Ze2�r/mr3.
Hence the total effective magnetic field is

�Beff =
Ze

2mc

1

r3
�L

which results in a spin-orbit coupling of

Eso = −�μs · �Beff = −−e

mc

Ze

2mc

1

r3
�S · �L =

Ze2

2m2c2
1

r3
�S · �L

For hydrogen-like atoms, the above expression can be evaluated exactly,
and gives the following result for the fine structure (or spin-orbit) splitting

ΔEfs = α2R∞
Z4

n3�(�+ 1)
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The strong dependence on Z results from both the reduction in size of the
electron wavefunction for larger Z and its higher velocity (remember this
is a relativistic effect).

For one-electron atoms with cores, it is possible to get estimates of ΔEfs

good to ∼ 15% by considering that the electron sees a charge Z◦ = Z−Zcore

outside the core, and Z inside. Then

ΔEfs = α2R∞
Z2
◦Z

2

n3�(�+ 1)
(3.11)

Since the spin-orbit interaction is a relativistic effect, it is inconsistent to
consider it in the absence of other relativistic energy corrections. When
this is done for hydrogen atom one obtains

Enj = Eelectrostatic + Eso + Erelativistic

= −Z2R∞
n2

[
1 +

Z2α2

n

(
1

J + 1/2
− 3

4n

)]
which predicts that only n and J are necessary to determine the energy
of a level. Thus the spin-orbit splitting remains unchanged by the
other relativistic effects.

4. The Landé vector model of gj — Weak field

In a weak magnetic field, the spin-orbit interaction couples �S and �L together
to form

�J = �L+ �S

This resultant angular momentum interacts with the applied magnetic field
with an energy

U = −gjμB
�B · �J/�

The interaction of the field is actually with �μs and �μ�; however gj is not

simply related to these quantities because �μs and �μ� precess about �J in-
stead of the field. As Landé showed in investigations of angular momentum
coupling of different electrons, it is a simple matter to find gj by calculating

the sum of the projections of �μs and �μ� onto �J .

Projection of �μ� on �J μ�j = −μB
|�L|
�

�L · �J
|�L|| �J |

Projection of �μs on �J μsj = −gsμB
|�S|
�

�S · �J
|�S|| �J |
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This yields

gj = −μ�j + μsj

μB| �J |/�
Definition of gj

=
�L · (�L+ �S) + 2�S · (�L + �S)

| �J |2
Taking gs = 2

= 1 +
�S · (�L+ �S)

| �J |2

Using the relation

| �J |2 = |(�L+ �S)|2 = |�L|2 + |�S|2 + 2�L · �S
=⇒ �L · �S =

1

2

(
| �J |2 − |�L|2 − |�S|2

)
one gets

gj = 1 +
J(J + 1) + s(s+ 1)− �(�+ 1)

2J(J + 1)

where �, s, and J are the respective quantum numbers of the state in which
gj is being evaluated, with the condition that J �= 0. If J = 0, then gj = 0.

If a transition from a level with angular momentum J to a level with angular
momentum J ′ takes place in the presence of a magnetic field, the resulting
spectral line will be split into three or more components—a phenomenon
known as the Zeeman effect. These transitions are called electric dipole
allowed transitions and the relevant selection rules (which we will see in
Chapter 6, “Interaction”) require that the only values allowed for Δm are
−1, 0,+1. The components will hence have shifts

ΔEΔm=−1 = [gjm− gj′(m− 1)]μBB = [(gj − gj′)m+ gj′ ]μBB

ΔEΔm=0 = [gjm− gj′m]μBB = [(gj − gj′)m]μBB

ΔEΔm=+1 = [gjm− gj′(m+ 1)]μBB = [(gj − gj′)m− gj′ ]μBB

If gj = gj′ (e.g. for a
1P1 → 1D2 transition, where s = 0 and J = � so that

gj = gj′ = 1), then ΔE will not depend on m. Alternately, if either J or J ′

is 0 so that the corresponding gj is 0 (e.g. for a 1S0 → 1P1 transition), then
there will be only one shift for each Δm. Thus in both cases there will be
three components of the line corresponding to the three shifts listed above;
this is called the normal Zeeman splitting. If neither of these conditions
holds (e.g. for a 2S1/2 → 2P3/2 transition), the line will be split into more
than three components and the Zeeman structure is termed anomalous—
it cannot be explained with classical atomic models because it involves the
spin of the electron.
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D. Atoms in static electric fields — Stark effect

This section deals with the behavior of the energy levels of an atom that
is placed in a static electric field. The basic treatment involves Rayleigh–
Schrödinger stationary perturbation theory, because the perturbing field is
assumed to be weak. The treatment will cover two important topics: the
restrictions placed on the qualitative nature of the interaction by symmetry
considerations, and the concept of oscillator strength and its use to simplify
the dipole matrix elements of atoms.

1. Restrictions due to parity

The operation of inverting the coordinates is called parity reversal. Its
effect on the coordinates is:

Cartesian (x, y, z) → (−x,−y,−z)

Spherical (r, θ, φ) → (r, π − θ, φ+ π)

Polar vectors (e.g. the position �r or momentum �p) change sign under

parity reversal. Axial vectors (e.g. angular momentum �L ≡ �r×�p or torque
�N ≡ �r × �F ) do not change sign. Axial vectors are (cross) products of two
polar vectors, and are actually second rank tensors with the requirement
of being antisymmetric; only in three dimensions an antisymmetric second
rank tensor has three components, which can be written conveniently as the
components of a vector. Axial vectors are called that because they require
an axis and sign convention (e.g. right hand rule) for their definition. The

electric field vector �E is polar, while the magnetic field vector �B (remember

it can be written as ∇× �A) is axial.

Electromagnetic interactions at low energies (so we can neglect the weak
interactions, which are known to violate parity) are invariant under parity
reversal. Therefore the Hamiltonian for an isolated atom H◦ may be taken
to be invariant under parity reversal.∗ Symbolically

I−1H◦I = H◦ =⇒ [H◦, I] = 0

where I is the inversion operator (and not the identity operator 1). This
means that each eigenstate of H◦ must have a definite parity. In case there
are degenerate states with the same energy, it must be possible to find
linear combinations of them which have definite parity (although these are
not the best basis states for all problems).

The parity operator has the property (shared with operators for time rever-
sal, charge conjugation, reflection, etc.) that I2 = 1; two inversions bring

∗If we want to discuss parity non-conservation measurements in atoms, we have to add
a specifically parity violating term to the Hamiltonian.
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you back to where you started. Thus for any state |En, i〉, with energy En

and parity i,

I |En, i〉 = i |En, i〉
Then i2 = 1 which implies i = ±1. The plus and minus signs are called
even and odd parity states, respectively.

Consider the interaction of a static external electric field of strength E
along the +z axis with a single electron. Choosing z as the operator for
the electron position, and since the field �E = E ẑ implies φ = −Ez, the
interaction Hamiltonian is

H ′ = −eφ = eEz
This interaction can be considered as a perturbation if the field is weak (E
is small) compared to the other fields present in the atom, like for example
the Coulomb field of the nucleus. The perturbation has negative parity
because I−1zI = −z which implies

I−1H ′I = −H ′

Noting that II = I−1I−1 = 1 we can write the perturbation matrix element
as

〈En′ , i′|H ′|En′′ , i′′〉 = 〈En′ , i′|I−1I−1H ′II|En′′ , i′′〉
= −i′i′′ 〈En′ , i′|H ′|En′′ , i′′〉

This forces the matrix element to be zero unless i′ and i′′ have opposite
signs. Thus H ′ has matrix elements only between states of opposite
parity. Matrix elements of H ′ between states of the same parity vanish.
In particular,

〈En, i|H ′|En, i〉 = 0

Hence there is no first order perturbation (i.e. linear Stark effect) if |En, i〉
is a non-degenerate state. Any energy shift resulting from the interaction
of an atomic system with a static electric field must be quadratic in E .
In electrostatics the potential energy of a system at �r in an electric field is

U(�r) = qφ(�r)− �d · �E(�r)− α�E(�r) · �E(�r)− 1

6

∑
i,j

Qij
∂Ej(�r)

∂xi
(3.12)

q = charge

�d = permanent electric dipole moment

α = isotropic polarizability

Qij = quadrupole moment
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Thus an atomic system which has no linear Stark shift is said to have no
permanent electric dipole moment (EDM). The existence of an atomic EDM
forms an important class of experiments, and will be discussed in the next
section.

The preceding argument does not apply if the system has two degener-
ate energy levels of opposite parity, since then one can form superposition
states which do not have a definite parity. This happens, for example, in
polar molecules which have degenerate levels of different orientations called
isomers. As a consequence, molecules can have permanent electric dipole
moments whereas atoms do not.

A system can have a dipole moment even if the two energy states of opposite
parity, |En+〉 and |En+〉, are not exactly degenerate, but only nearly so.
Because if they satisfy the condition

〈En+|eEz|En−〉 > (En+ − En−) (3.13)

then perturbation theory is not valid. If the two-state secular equation is
solved exactly it will lead to eigenstates of

E±
field = ±eE 〈En+|z|En−〉

so that the system will appear to have a dipole moment equal to

e 〈En+|z|En−〉

but only for field strengths for which (3.13) holds. The 2S1/2 state of H is
generally said to have a linear Stark effect because the field for which (3.13)
is an equality is around 5 V/cm and it was not possible to observe the Stark
splitting at lower fields (where it is quadratic) using classical spectroscopy.
Furthermore the energies of the 2S1/2 and 2P1/2 states were thought to be
exactly degenerate before the development of quantum electrodynamics.

The discussion above shows that a macroscopic object can have a per-
manent dipole moment, provided that it is in a state that is a superposition
of two (or more) nearly degenerate states for which i is a good quantum
number, and which therefore do not have dipole moments. If a dipole mo-
ment is created by an electric field satisfying (3.13), it will persist for a time
∼ �(E+ − E−)−1. The E+ − E− splitting is directly proportional to the
tunneling rate of the system between states with the dipole up and down;
since this rate decreases exponentially with the

√
length× height of any

barrier in the middle, the dipole moments of macroscopic objects persist
essentially forever.



Atoms in static electric fields — Stark effect 79

2. Stationary perturbation theory

We first recall some results of stationary perturbation theory because they
will be used to calculate the DC polarizability and the induced dipole mo-
ment.

Assume that the Hamiltonian of a system may be written as the sum of
two parts

H = H◦ +H ′

where H◦ is the unperturbed Hamiltonian and H ′ is a weak perturbation.

Furthermore, assume that the problem of obtaining eigenstates and eigen-
values for H◦ has been accomplished, so that

H◦ |n(0)〉 = E(0)
n |n(0)〉

Assuming that H◦ is independent of time, there are basically two types of
perturbation theory depending on whether or not H ′ is time dependent.
If H ′ is time independent, the problem is called stationary and the ap-
propriate perturbation theory is the Rayleigh–Schrödinger stationary
perturbation theory.

Since H ′ is weak, the eigenvalues and eigenstates change only slightly from
their unperturbed values. Hence we can expand them in the form

En = E(0)
n + E(1)

n + E(2)
n + . . .

|n〉 = |n(0)〉+ |n(1)〉+ |n(2)〉+ . . .

where we are expressing the ith order perturbation as E(i) and |n(i)〉. The
matrix elements of H ′ are normalized by the condition 〈n|n〉 = 1 implying
〈n(i)|n(0)〉 = 0 for i �= 0.

For the energy one obtains

E(i)
n = 〈n(0)|H ′|n(i−1)〉

meaning the ith order perturbed energy depends on the (i − 1)th order
perturbed wavefunction.

The results are as follows—all rhs quantities have superscript 0 (except H ′)
denoting the unperturbed quantities.

(i) First order

E(1)
n = 〈n|H ′|n〉

|n(1)〉 =
∑
m

′ 〈m|H ′|n〉
En − Em

|m〉
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The
∑′

means to omit the term m = n in the summation, and it is
understood that the sum extends over continuum states also.

(ii) Second order

E(2)
n =

∑
m

′ |〈m|H ′|n〉|2
En − Em

|n(2)〉 = −
∑
m

′ 〈m|H ′|n〉 〈n|H ′|n〉
(En − Em)2

|m〉+
∑
m,p

′ 〈m|H ′|p〉 〈p|H ′|n〉
(En − Em)(En − Ep)

|m〉

Note that the effect of a coupling of n and m together by H ′ is always
to push the levels apart (to raise the upper and lower the lower) in
second order perturbation theory, independent of the value of H ′

nm.
This leads to repulsion of states coupled by H ′.

(iii) Third order

E(3)
n = −

∑
m

′ |〈n|H ′|m〉|2 〈n|H ′|n〉
(En − Em)2

+
∑
m,p

′ 〈n|H ′|m〉 〈m|H ′|p〉 〈p|H ′|n〉
(En − Em)(En − Ep)

Problems arise if the level n is a degenerate level such that Em = En

for some m, since then the energy denominators blow up. This prob-
lem may be solved by using linear combinations of these degenerate
eigenvalues constructed so that 〈m|H ′|n〉 = 0.
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3. DC polarizability and dipole moment

We now give expressions for the energy and polarizability of an atom placed
in a static electric field polarized along the +z direction

�E = E ẑ

We assume that the field is weak so that we can use the results of stationary
perturbation theory. As shown before, the perturbation Hamiltonian is

H ′ = eEz
and parity forces H ′

mm = 0 for all m, so there will be no first order pertur-
bation of the energy. Then, to second order

ΔEn = −e2E2
∑
m

′ |〈m|z|n〉|2
Em − En

(3.14)

which is the energy shift of the atom due to the Stark effect. This quantity
is often called the DC Stark shift, to distinguish it from the AC Stark shift
in an oscillating field which we will see later in the chapter.

If we compare the above expression with the potential energy U of a charge
distribution interacting with an electric field in Eq. (3.12), one could identify
the polarizability with the sum. This identification is incorrect, however: U
represents the potential energy of the charge distribution interacting with
the external field; ΔEn also includes the energy required to polarize the
atom. Making an analogy with the energy stored in a capacitor shows that
the stored energy is − 1

2 the interaction energy. Thus

ΔEn = ΔU +ΔUint = −1

2
αnE2

As a result the DC polarizability of an atom in the state |n〉 is

αn = 2e2
∑
m

′ |〈m|z|n〉|2
Em − En

(3.15)

which has the dimensions l3, i.e. it is a volume.

The induced dipole moment can be found from electrostatics,

�dn = αn
�E = 2e2E ẑ

∑
m

′ |〈m|z|n〉|2
Em − En

(3.16)

An alternative way to find the dipole moment would be to define a dipole
operator

�P ≡ −e�r (3.17)
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and find �dn from the expectation value of this operator using the first order
perturbed state vector |n1〉 ≡ |n(0)〉+ |n(1)〉 while noting that H ′ = − �P · �E

�dn = 〈n1|�P |n1〉

= 2Re{〈n(0)|�P |n(1)〉}

= 2e2Re

{∑
r,m

′ 〈n(0)|r|m〉 〈m|�r · �E|n(0)〉
Em − En

r̂

}

where the sum is over r = x, y, z. Only the term r = z will give a non-zero
result, and it will yield results in accord with Eq. (3.16).

The polarizability may be approximated using Unsold’s approximation,
where the energy term Em in the summation is approximated by an average
energy Ēm and taken out. Using the closure relation

∑
m |m〉 〈m| = 1, one

gets∗

αn =
2e2

Ēm − En

∑
m

〈n|z|m〉 〈m|z|n〉

=
2e2 〈n|z2|n〉
Ēm − En

In order to get an estimate of the polarizability in the ground state of
hydrogen, we take Ēm = 0 (good enough for H because |g〉 is far from the
other states) and use the result of the virial theorem (again valid for H
where V ∼ r−1) to relate Eg and r

Eg = 〈U〉g + 〈K〉g U is potential and K is kinetic

=
1

2
〈U〉g Virial theorem

=
−e2

2
〈r−1〉g

Noting that 〈g|z2|g〉 = 1
3 〈r2〉g gives the result

αg =
4

3

〈r2〉g
〈r−1〉g

which shows that αg is closely related to the volume of the atom.

∗The term m = n does not need to be excluded from the sum because 〈n|z|n〉 = 0.



Atoms in static electric fields — Stark effect 83

4. Beyond the quadratic Stark effect

It should be clear from the previous discussion that the Stark effect for a
state |a〉 is quadratic only if the electric field is well below a critical value,
given by

Ecrit � Eb − Ea

e |〈b|�r|a〉|
where |b〉 is the nearest state of opposite parity to |a〉.
If |a〉 is the ground state |g〉, then the critical field is very large. To see
this, we can estimate its value in a ground state. The energy difference to
the nearest state of opposite parity is

ΔE ≡ Eb − Ea ≈ 0.5Eg

and the relevant matrix element to this state is

|〈r〉|−1 ≈ |〈r−1〉| = 2Eg/e
2 Virial theorem

Using Eg ∼ 0.3 Hartree, the critical field can be estimated to be

Ecrit =
(
0.3

me4

�2

)2
1

e3

≈ 0.1×
(

e

a2◦

)
← atomic unit of E field

or about 5 × 108 V/cm, which is a field that is three orders of magnitude
in excess of what can be produced in a laboratory except in a vanishingly
small volume.

If |a〉 is an excited state, say |n, �〉, then this situation changes dramatically,
with Ecrit becoming quite small. In general, ΔE to the next state of opposite
parity depends on the quantum defect

ΔE ≡ En,�+1 − En,� =
−RH

(n− δ�+1)2
− −RH

(n− δ�)2
≈ 2RH(δ�+1 − δ�)

n∗3

and the matrix element to that state is

〈n, �+ 1|�r|n, �〉 ∼ n2a◦

Thus the critical field is lowered to

Ecrit = me4

�2

1

ea◦

δ�+1 − δ�
n∗5

=

(
e

a2◦

)
× δ�+1 − δ�

n∗5



84 Atoms

Considering that quantum defects are typically ≤ 10−5 when � ≥ �core + 1,
where �core is the largest � of an electron in the core, it is clear that even
fields of value 1 V/cm will exceed Ecrit for higher � states if n∗ > 7. Large
laboratory fields (of order 105 V/cm) can exceed Ecrit even for s states if
n∗ ≥ 5.

When the electric field exceeds Ecrit, states with different � but the same n
are degenerate to the extent that their quantum defects are small. Once
� exceeds the number of core electrons, these states will easily become
completely mixed by the field and they must be diagonalized exactly. The
result is eigenstates possessing apparently permanent electric dipoles with
a resulting linear Stark shift. As the field increases, these states spread out
in energy. First they run into states with the same n but different quantum
defects; then the groups of states with different n begin to overlap. At this
point a matrix containing all |n, �〉 states with � ≥ m� must be diagonalized.
The only saving grace is that the lowest n states do not partake in this
strong mixing; however, the n states near the continuum always do if there
is an electric field present.

The situation described above differs qualitatively for hydrogen since it has
no quantum defects and the energies are degenerate. In this case the zero
field problem may be solved using a basis which diagonalizes the Hamilto-
nian for both the atom and the presence of an electric field. This approach
corresponds to solving the hydrogen atom in parabolic-ellipsoidal coordi-
nates and results in the presence of an integral quantum number which
replaces �. The resulting states possess permanent dipole moments which
vary with this quantum number, and therefore have linear Stark effects
even in infinitesimal fields. Moreover the matrix elements which mix states
from different n manifolds vanish at all fields, so the upper energy levels
from one manifold cross the lower energy levels from the manifold above
without interacting with them.

The dramatic difference between the physical properties of atoms with n >
10 and the properties of the same atoms in their ground state, coupled with
the fact that these properties are largely independent of the type of atom
which is excited, justifies the application of the name Rydberg atoms to
highly excited atoms in general.
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5. Field ionization

If an atom is placed in a sufficiently high electric field it will be ionized, a
process called field ionization. An excellent order of magnitude estimate
of the field Eion required to ionize an atom which is initially in a bound state
with energy −E can be obtained by the following purely classical argument:
the presence of the field adds the term U(z) = eEz to the potential energy
of the atom. This produces a potential with a maximum along the negative
z axis with Umax < 0, and the atom will ionize if Umax < −E.

Figure 3.2: Potential energy vs. z for field ionization.

Fig. 3.2 shows Uatom, Ufie1d, and the total potential

Utotal(z) = Uatom(z) + Ufield(z) =
−e2

|z| + eEz

The maximum as determined by dU/dz = 0 occurs at

zmax = −
√

e

E
Equating Umax to −E yields

Eion =
E2

4e3
for a state with energy −E

For a general level with quantum number n∗

E = −me4

�2

1

n∗2 = − e2

2a◦

1

n∗2
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so the ionizing field becomes

Eion =
1

16n∗4 ×
(

e

a2◦

)
← atomic unit of E field

= 3.2× 108 (n∗)−4 V/cm

The predictions of this formula for Eion are usually accurate within 20% in
spite of its neglect of both quantum tunneling and the change in E produced
by the field. Tunneling manifests itself as a finite decay rate for states
which classically lie lower than the barrier. The increase of the ionization
rate with field is quite dramatic; however, the details of the experiment do
not influence the field at which ionization occurs very much. Calculations
show the ionization rate increasing from 105/s to 1010/s for a 30% increase
in the field.

Oddly enough the classical prediction works worse for H than for any other
atom. This is a reflection of the fact that certain matrix elements necessary
to mix the |n, �〉 states (so the wavefunction samples the region near Umax)
are rigorously zero in H. Hence the orbital ellipse of the electron does not
precess and can remain on the side of the nucleus. There its energy will
increase with E , but it will not spill over the lip of the potential and ionize.
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E. Permanent atomic electric dipole moment
(EDM)

In this section, we discuss when and how a permanent EDM can exist
in an atom, and how to look for it experimentally. We first define the
three discrete symmetry operators: parity P , time reversal T , and charge
conjugation C. There is a theorem—the CPT theorem—which states that
the combined operation of the three is conserved in all physical laws. Thus
the observation of CP violation in neutral kaon decay is believed to imply
T violation.

1. EDM implies P and T violation

In the previous section, we saw that an atom cannot have an EDM unless
P is violated. We can also show that the existence of an EDM implies T
violation. The simplest way to see this is to refer to Fig. 3.3 below.

Figure 3.3: Effect of time reversal operation: �d → �d and �J → − �J . Since
the EDM �d is always in the direction of �J , it has to be zero unless time
reversal symmetry is violated.

From the Wigner–Eckart theorem, we know that the angular momen-
tum vector �J is the only vector in the body-fixed frame—all other vectors
must be proportional to it. Applied to the EDM �d, this means that

�d = d
�J

J

In the time-reversed world, �J (which recall is �r × �p) changes sign, but �d
does not. Thus

�d = −d
�J

J
after time reversal
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which shows either that �d = 0, or that a non-zero �d implies T violation.
The argument for P violation is similar—under P transformation, the polar
vector �d changes sign but the axial vector �J does not.

The Standard Model (SM) of particle physics accommodates CP violation
seen in neutral kaon decay, but predicts EDMs for fundamental particles
that are in the range of 10−36 e-cm.∗ This is about 7 to 8 orders-of-
magnitude less than current experimental precision. However, theories that
go beyond the SM, such as supersymmetry, predict EDMs within experi-
mental range, and are strongly constrained by measured limits on EDMs.
Thus EDM searches form an important tool in looking for new physics
beyond the SM, though none has been found so far.

In atoms, an EDM can arise due to either (i) an intrinsic electron EDM, (ii)
an intrinsic EDM of the neutron or proton, or (iii) a PT-violating nucleon-
nucleon or electron-nucleon interaction. Different atoms have different sen-
sitivities to these sources of EDM. In heavy paramagnetic atoms, such as
Cs or Tl, the atomic EDM is enhanced by a factor of 100 to 1000 times the
intrinsic electron EDM due to relativistic effects. Therefore experiments
on such atoms put limits on the existence of an electron EDM. On the
other hand, diamagnetic atoms, such as Hg or Yb, are more sensitive to
the nuclear Schiff moment and any PT-odd interactions.

2. Experimental method

Atomic EDMs are measured using spin-polarized atoms in the presence
of parallel (or anti-parallel) electric and magnetic fields. Recalling that

both the electric and magnetic moments are proportional to �J , the total
interaction energy is

U = −
(
d �E + μ�B

)
·
�J

J

The Larmor precession frequency (which we will see more of in Chapter 5,

“Resonance”) is determined by the interaction of �μ with �B, and changes

when the direction of the applied �E field is reversed from being parallel to
anti-parallel with respect to �B. The change is given by

ΔΩL =
2dE

�

Measurement of ΔΩL therefore constitutes a measurement of the EDM.
One experimental advantage of E field reversal is that any imperfections in
the B field are inconsequential.

∗The standard unit for measuring EDM is e-cm, corresponding to two charges of ±e
separated by 1 cm.
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The above analysis shows that, in order to measure the EDM precisely, one
needs to (i) measure the Larmor precession frequency very precisely, (ii)
have a large E field, and (iii) keep the interaction time with the E field as
large as possible. Atomic EDM measurements are usually performed using
atomic beams or in vapor cells. With atomic beams, the main limitation
is that the interaction time is quite short even if the E-field region is 100
cm long. In vapor-cell experiments, the applied E field is limited by the
high pressure to about 10 kV/cm; whereas, the use of an atomic beam in a
vacuum system allows the E field to be about 100 kV/cm.

The best current limit (as of 2014) is that the electron EDM is less than
∼ 10−27 e-cm from a measurement in a thermal beam of Tl atoms; and
that the atomic EDM is less than ∼ 10−29 e-cm from a measurement in a
vapor cell containing Hg atoms.
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F. Atoms in oscillating electric fields

If an atomic system is placed in an electric field which oscillates at a fre-
quency far from any resonant frequencies, a polarization will be induced
in the system which oscillates in phase with the field. This polarization
will have two effects: (i) the energy of the system in the field will be differ-
ent from its field-free value (i.e. its energy levels will be shifted), and (ii)
there will be a macroscopic polarization of a gas of such systems causing a
departure of the index of refraction from unity.

1. AC polarizability

In this subsection we calculate the response of an atom to the oscillating
field

�E(ω, t) = E cosωt ε̂ ε̂ is the polarization of the field

We assume that the field is weak so that we can use the results of first order
time dependent perturbation theory. As usual, we break the Hamiltonian
into two parts

H = H◦ +H ′(t) = H◦ − 1

2
E (e+iωt + e−iωt) ε̂ · �P (3.18)

where �P is the dipole operator introduced in (3.17).

We express the solution of the time dependent Schrödinger equation as an
expansion in the basis of eigenstates |n〉 of H◦

|ψ(t)〉 =
∑
n

an(t)e
−iEnt/� |n〉

Substitution into the Schrödinger equation shows that the an must satisfy

ȧk = (i�)−1
∑
n

〈k|H ′(t)|n〉 aneiωknt

where ωkn = (Ek − En)/�.

This is an exact equation (it corresponds to the Interaction picture),
and it must frequently be solved by perturbation theory. This consists of a

(hopefully convergent) set of approximations to ak labeled a
(i)
k (t). Starting

with

a(0)n (t) = an(0)

one sets

ȧ
(i+1)
k (t) = (i�)−1

∑
n

〈k|H ′(t)|n〉 a(i)n (t) eiωknt (3.19)
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and solves for the successive approximations by integration.

Let us now turn to the problem of an atom which is in its ground state |g〉
at t = 0, and which is subject to the varying field whose Hamiltonian is
given in Eq. (3.18). Substituting into the Eq. (3.19) and integrating from
0 to t gives

a
(1)
i (t) = (i�)−1

t∫
0

〈i|H ′(t′)|g〉 eiωigt
′

dt′

= −(i�)−1 〈i|ε̂ · �P |g〉 E
2

t∫
0

[
ei(ωig+ω)t′ + ei(ωig−ω)t′

]
dt′

=
E
2�

〈i|ε̂ · �P |g〉
[
ei(ωig+ω)t − 1

ωig + ω
+

ei(ωig−ω)t − 1

ωig − ω

]
The −1’s come from the persistence of transients generated at t = 0 when
the field was turned on. If there is damping in the system, and t times the
damping rate is 	 1, then these terms may be ignored, as we do in the
following.

The term with ωig +ω in the denominator is called the counter-rotating
term, and may be neglected if one is looking at ω ≈ ωig (i.e. near reso-
nance). Ignoring the counter-rotating term is called making the rotating
wave approximation, which we will see more of later. In order for the
co-rotating term not to blow up, a small imaginary term is added to ωig

which takes into account spontaneous emission from state |i〉.
In the present case (far from resonance) we retain both terms and calculate
the expectation value in the ground state of the first order time dependent
dipole operator

〈�P (ω, t)〉g = 2Re

{
〈g|�P |

∑
i

a
(1)
i (t)e−iωigt|i〉

}

= E Re

{∑
i

〈g|�P |i〉 〈i|ε̂ · �P |g〉
�

[
eiωt

ωig + ω
+

e−iωt

ωig − ω

]}

which is by definition the induced dipole moment.

If we now specialize to the case linearly polarized incident light (ε̂ = ẑ)
then

�dg(ω, t) =
2e2

�
ẑ
∑
i

ωig|〈i|z|g〉|2
ω2
ig − ω2

E cosωt
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This means that the AC polarizability at ω is

αg(ω) =
2e2

�

∑
i

ωig|〈i|z|g〉|2
ω2
ig − ω2

(3.20)

which reduces to the DC value in (3.15) when ω → 0.

2. Oscillator strength expression for polarizabilities

The expressions for the DC and AC polarizabilities shows that the matrix
element for the dipole operator 〈m|�P |n〉 is by far the most important matrix
element for the electrons in an atom because it governs the interaction of
electric fields with the atom. The expression bears a close resemblance
to the response of a harmonically bound electron driven by an oscillating
electric field that we saw in Chapter 2, “Preliminaries.” It leads us to
express these matrix elements in terms of the oscillator strength fmn for the
transition—a dimensionless quantity that relates the strength of this matrix
element to the strength of the same matrix element for a harmonically
bound electron whose resonant frequency is ωmn.

The oscillator strength is defined for a transition between two levels, and
not two states. We highlight this fact by using uppercase letters to label
the levels. Thus the oscillator strength for a transition from level |A〉 to
level |B〉 is

fAB ≡ 2

3

m

e2�
ωBA

1

2JA + 1

∑
mA,mB

|〈B,mB|�P |A,mA〉|2

where 2JA + 1 is the multiplicity of |A〉. We have averaged over all the
m states to indicate the rotational symmetry of the definition. For one
particular value of mA, the sum is only over all values of mB, so that

fAB =
2

3

m

e2�
ωBA

∑
mB

|〈B,mB |�P |A,mA〉|2

If we choose the z axis as the quantization axis, as we have done for the
polarizability, and note that z2 is r2/3, then

fAB = 2
m

�
ωBA

1

2JA + 1

∑
mA,mB

|〈B,mB|z|A,mA〉|2

If we try to express the polarizability in terms of the oscillator strength, a
problem arises due to the fact that fAB is defined to reflect the rotational
invariance of the atomic levels, whereas the polarizability as defined in
(3.20) does not

αn(ω) =
2e2

�

∑
b

ωbn|〈b|z|n〉|2
ω2
bn − ω2
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Therefore, αn will depend on mn. This reflects the fact that mn influences
the spatial distribution of the charge and therefore its interaction with a
field along z. Thus we must first define an Isotropic Polarizability using
an average over m

αN =
1

2JN + 1

∑
mN

αn(ω,mN )

=
2

3�

1

2JN + 1

∑
B,mB ,mN

ωBN |〈B,mB|�P |N,mN 〉|2
ω2
BN − ω2

The quantity αN is rotationally invariant—in fact it is the trace of the
polarizability tensor. It can be expressed in terms of the oscillator strengths
in the particularly simple form

αN =
e2

m

∑
B

fNB

ω2
BN − ω2

Thus the two isotropic polarizabilities from Eqs. (3.15) and (3.20) are

DC αN =
e2

m

∑
M

fNM

ω2
MN

AC αG =
e2

m

∑
I

fGI

ω2
IG − ω2

Our definition for oscillator strengths shows that fBA and fAB are related
by

fBA = −2JA + 1

2JB + 1
fAB

This relationship stresses two subtleties of oscillator strengths: their magni-
tude and sign both depend on which way the transition occurs. Their sign
is negative for emission from an upper to a lower level, and positive for ab-
sorption, which means we have to say “the oscillator strength for absorption
from level |A〉 to level |B〉 . . . ” etc.

One motivation for expressing quantities which involve atomic dipole matrix
elements in terms of the oscillator strengths is that the oscillator strengths
obey a number of sum rules which place constraints on their values. The
most famous sum rule is the Thomas–Reiche–Kuhn sum rule∑

B

fGB = Ze |G〉 is the ground state

where Ze is the number of electrons in the atom. The sum above extends
over all bound and continuum states involving excitations of any and all
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of the electrons. If the sum is restricted to configurations with only one
excited electron (and includes the continuum only for this electron) then∑

B

fGB ≈ 1 one-electron only

An interesting feature about transitions that comes out from the study of
oscillator strengths is that transitions from an initial state |n, �〉 to a final
state |n′, �′〉 on the average have stronger oscillator strengths for absorption
if �′ > �, and stronger oscillator strengths for emission if �′ < �. In other
words, atoms “like” to increase their angular momentum on absorption of
a photon, and decrease it on emission.

3. Susceptibility and index of refraction

If a gas of atoms whose density is N is exposed to an oscillating field, the
gas will exhibit a polarization with a frequency-dependent susceptibility

�P = χ(ω) �E with χ(ω) = Nα(ω)

The dielectric constant and index of refraction will be

ε = 1 + 4πχ(ω)

n =
√
ε = 1 + 2πχ(ω) for low density gases where χ � 1

If Eq. (3.20) is used for α(ω) then

(i) χ will be real.

(ii) The induced polarization will be in phase with the applied electric

field, and the radiation due to �P will add coherently to �E.

(iii) The only physical effect will be to cause a change in the index of
refraction from unity, and hence change the speed of propagation of
the wave.

The above points reflect the fact that Eq. (3.20) did not allow for radia-
tive damping of the atomic system—the excited states were assumed to be
infinitely sharp. It is also implicitly assumed that the scattered radiation
due to �P interferes destructively in all directions other than that of �E, an
assumption which is valid only for a dense spaced array of N atoms (e.g.
in glass). Due to the random distribution of atoms in a gas, destructive
interference is imperfect to order N1/2 and a scattered E field proportional
to N1/2 is therefore produced, resulting in scattering whose intensity is
proportional to N . This is known as Rayleigh scattering (or resonance
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fluorescence if you are at resonance, ω = ωig for some |i〉), and is usually
computed simply by taking N times the scattering for a single atom. Such
a scattering depletes the intensity of the incident field, and is tremendously
important; it permits us to see fluorescence radiation from atomic gases
without being blinded by the exciting light.

But coming back to radiative damping, we can account for it in a phe-
nomenological way by replacing ωig with (ωig − iΓi/2) in Eq. (3.20). As a
result, α and χ will become complex. In this case, it is traditional to divide
χ into real and imaginary parts explicitly

χ = χ′ + iχ′′

When a complex susceptibility is used, the wave equation produces solutions
of the form (for a wave traveling along z)

�E(�r, t) = �E◦(x, y)Re
{
ei(kz−ωt)

}
with [

kc

ω

]2
= 1 + 4πχ (3.21)

Since c and ω are real, k must be complex

k = (η + iκ)ω/c

Consequently, the propagating wave becomes

�E(�r, t) = �E◦(x, y)e−κωz/c Re
{
ei[ηωz/c−ωt]

}
which shows that the wave is attenuated as it propagates.

The index of refraction is now the real part of k, while its imaginary part
is called the attenuation factor. They are determined by solving Eq. (3.21),
with the results

η2 − κ2 = 1 + 4πχ′ and 2ηκ = 4πχ′′

If χ′ and χ′′ are both � 1, then the solution is

η ≈ 1 + 2πχ′ and κ ≈ 2πχ′′

In order to see the lineshapes of these two components as a function of
frequency, we go back to the polarizability in Eq. (3.20). For simplicity, we
consider only one excited state |i〉, and subsume all the constants into one
K. Then the expression with Γi to make α complex becomes

αg(ω) = K
ωig − iΓi/2

(ωig − iΓi/2)2 − ω2

≈ K

2

(ω − ωig) + iΓi/2

(ω − ωig)2 + (Γi/2)2
for Γi � ωig and ω ≈ ωig

(3.22)
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The real and imaginary parts of the susceptibility as a function of ω − ωig

are plotted in Fig. 3.4. It is clear that κ has a Lorentzian shape near ωig,
while the index of refraction obeys a dispersion curve. This is, in fact, the
origin of the name dispersion as applied to this function—dispersion refers
to the frequency dependence of the index of refraction in classical optics,
which disperses the light into its various components.

Figure 3.4: Plots of η (corresponding to the real part of χ) and κ (corre-
sponding to the imaginary part of χ) as a function of frequency.

(i) Causality and the Kramers–Kronig relations

It may at first seem that the real and imaginary parts of χ are independent
entries—one causing a phase delay and the other corresponding to absorp-
tion. This is emphatically not the case: any physical device must satisfy
causality, i.e. nothing can come out until after something is put in, and this
imposes restriction on the frequency dependence of χ′and χ′′.

For example, if χ′′ is large and negative except when |ω − ω◦| < Δω, the
gas transmits only if ω ≈ ω◦. A δ-function input (at t = 0) thus comes out
as a nearly monochromatic wave packet which extends for a time ∼ 1/Δω
on either side of its maximum. Unless this wave packet is strongly delayed,
i.e. χ′(ω ≈ ω◦) is large, the leading edge will come out before the δ-function
goes in!

For the susceptibility of a gas, the causality-imposed restrictions on χ are
called the Kramers–Kronig relationships:

χ′(ω) =
2

π
P

∞∫
0

ω′χ′′(ω′)
ω′2 − ω2

dω′ and χ′′(ω) = −2ω

π
P

∞∫
0

χ′(ω′)
ω′2 − ω2

dω′

where P means principal part. The susceptibility obtained from Eq. (3.22)
satisfies these relationships.



Atoms in oscillating electric fields 97

4. Level shifts — The AC Stark effect

We calculate the shift of an energy level from the isotropic AC polarizability

ΔEG(ω) = −1

2
αG(ω)E2(ω, t) = −1

2

e2

m

∑
I

fGI

ω2
IG − ω2

Ē2 (3.23)

which is often called the AC Stark shift, to contrast it with the DC Stark
shift that we saw earlier in Eq. (3.14). The two expressions are quite similar,
the one above differing only by the addition of the −ω2 term and the bar
denoting the time average over E2. As a result of the −ω2 term, the AC
shift can be much bigger (if ω → ωig), and it can have either sign.

The averaging of E2 seems quite reasonable on the grounds that the un-
certainty principle prevents one from measuring Eg with an accuracy on
the order of the shift in one period of oscillation of the applied field. Nev-
ertheless, it presents a severe philosophical problem because we are now
discussing a system whose Hamiltonian has explicit time dependence but
we are using the language of stationary perturbation theory. We dodge this
issue by insisting on an operational definition of an energy level; if a sec-
ond weak oscillating field (in addition to the strong one causing the shift)
is applied which causes transitions from the state |g〉 to another state |k〉
which is not significantly perturbed by the strong field, the resonance will
be observed at a frequency (Ek − Eg −ΔEg)/�.
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G. Strong oscillating fields — Dressed atoms

In this section, we solve the problem of an atom with two-states (labeled
|1〉 and |2〉 and having eigenfrequencies ω1 and ω2) in the presence of an
arbitrarily strong oscillating electric field of the form E cosωt. This solution
is called the dressed atom, because we will be looking for eigenstates that
are a combination of atom plus field basis states, so in a sense the atom
is being “dressed” by the field. The solution is semiclassical because, as
mentioned in Chapter 2, “Preliminaries,” only the atom, but not the field,
is treated quantum mechanically—hence spontaneous decay is not present.
It is an exact solution, valid at arbitrary field strength, but limited to a
two-state atom. In practice this is not a severe limit if only one intense
field is present, and if ω is much closer to ω21 than to any other atomic
frequencies.

1. The problem

Mathematically we suppose that the matrix representing the Hamiltonian
in the |1〉 , |2〉 basis has the following form

H =
�

2

[ −ω21 ωRe
+iωt

ωRe
−iωt ω21

]
ωR is the Rabi frequency

Though its exact form will be justified in Chapter 5, “Resonance,” the
important thing to note for our present purposes is that the off-diagonal
coupling element depends on the field strength, i.e. ωR ∝ E . Thus the weak
field limit corresponds to ωR → 0.

We begin our search for dressed solutions with the substitution

ψ =

[
a1 e

+iω21t/2

a2 e
−iω21t/2

]
The Schrödinger equation then yields the following equations of motion

ȧ1 = − iωR

2
e+iδta2

ȧ2 = − iωR

2
e−iδta1

(3.24)

where δ ≡ ω − ω21 is the detuning from resonance.

To find the dressed states we seek a substitution which will yield equations
with no explicitly time-dependent terms. The key point to realize is that
the atom will exhibit coherences at frequency ω, but not (in steady state) at
frequency ω21. This is just like the response of a classical driven harmonic
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oscillator—it oscillates at the drive frequency ω, not its natural frequency
ω◦. To achieve this, we substitute

a1 = b1e
+iδt/2

a2 = b2e
−iδt/2

which yields the coupled equations

ḃ1 =
i

2
(−δb1 − ωRb2)

ḃ2 =
i

2
(−ωRb1 + δb2)

While the above equations appear more complicated than those in (3.24),
they are steady state in the sense that they do not contain time-oscillating
terms. They are identical to the Schrödinger equation for a two-state system
with

H2 =
�

2

[
δ ωR

ωR −δ

]
H2 can be expressed using trigonometric functions as (the use of 2θ instead
of θ is for later convenience)

H2 =
�ω′

R

2

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
with

ω′
R =

√
δ2 + ω2

R the effective Rabi frequency

cos 2θ = δ/ω′
R

sin 2θ = ωR/ω
′
R

Rather than solve for the eigenvalues and eigenvectors of H2 in the conven-
tional way, we employ a shorter method of solution made possible by the
simplicities of a two-state system. This method consists of finding a matrix
T which diagonalizes H2. A suitable choice is

T =

[
cosφ sinφ
− sinφ cosφ

]
≡

[
c s
−s c

]
T is a general 2 × 2 unitary matrix—it corresponds to a rotation by φ in
the plane containing the basis states.

A short calculation will show that the transformation gives the result

T †H2T =
�ω′

R

2

[
D Q
Q −D

]
(3.25)
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with

D = (c2 − s2) cos 2θ − 2sc sin 2θ

Q = 2sc cos 2θ + (c2 − s2) sin 2θ

for arbitrary φ.

To diagonalize H2, Eq. (3.25) shows that Q must be zero

Q = 0 = sin 2φ cos 2θ + cos 2φ sin 2θ

which implies that φ = −θ. With this choice of φ

D = (c2 − s2) cos 2θ − 2sc sin 2θ = 1

2. The solution

The eigenvalues of H2 are [the diagonal elements of T †H2T in Eq. (3.25)]

λ± = ±�ω′
R/2

The associated eigenvectors are the columns of T

e+ =

[
cos θ
sin θ

]
e− =

[ − sin θ
cos θ

]
The resulting eigenfunctions in terms of |1〉 and |2〉 are

|t+〉 = cos θ e−i(2ω1+ω′
R−δ)t/2 |1〉+ sin θ e−i(2ω2+ω′

R+δ)t/2 |2〉
= e−i(2ω1+ω′

R−δ)t/2
[
cos θ |1〉+ e−iωt sin θ |2〉]

|t−〉 = − sin θ e−i(2ω1−ω′
R−δ)t/2 |1〉+ cos θ e−i(2ω2−ω′

R+δ)t/2 |2〉
= e−i(2ω2−ω′

R+δ)t/2
[−e+iωt sin θ |1〉+ cos θ |2〉]

(3.26)

The second lines of both |t+〉 and |t−〉 are written such that it is clear that
both states are coherent superpositions of |1〉 and |2〉 in which their relative
phase changes at a rate ω (not ω21).

The cos θ and sin θ factors may be expressed as (for all δ)

cos θ =

[
ω′
R + δ

2ω′
R

]1/2
=

[
1

2

(
1 +

δ

ω′
R

)]1/2

sin θ =

[
ω′
R − δ

2ω′
R

]1/2
=

[
1

2

(
1− δ

ω′
R

)]1/2



Strong oscillating fields — Dressed atoms 101

3. Time dependence

Since the eigenfunctions |t+〉 and |t−〉 diagonalize the atom with the field
present, the time evolution of the wave function is expressed easily in terms
of these states if we first define the following energy terms

E+
1 = �

(
ω1 +

ω′
R

2
− δ

2

)
E−

1 = �

(
ω1 − ω′

R

2
− δ

2

)
E+

2 = �

(
ω2 +

ω′
R

2
+

δ

2

)
E−

2 = �

(
ω2 − ω′

R

2
+

δ

2

)
(3.27)

The energy subscripts 1 and 2 are written to indicate that the components
of the dressed states approach the appropriate atomic state in the limit
ωR → 0 for the two signs of detuning, as will be clear from the expression
below. Thus, the time dependent wavefunction is

|ψ(t)〉 = aw |t+〉+ as |t−〉

=
(
aw cos θ e−iE+

1
t/� − as sin θ e

−iE−
1
t/�

)
|1〉

+
(
aw sin θ e−iE+

2
t/� − as cos θ e

−iE−
2
t/�

)
|2〉

The coefficients aw and as depend on the initial conditions, and are gener-
ally time independent.
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4. Eigenenergies versus field strength at fixed detuning

We now examine the interaction energy of the dressed atom with the
strength of the oscillating field at fixed ω. Recalling from the Hamilto-
nian that the field strength is proportional to ωR, this involves the study
of the change of the dressed-state eigenvalues E±

1,2 in (3.27) with �ωR.

Fig. 3.5 below shows the energies of the different branches for the three
cases of detuning.

Figure 3.5: Dressed-state energies as a function of field strength for the
three cases of detuning. The off-resonant branches approach the atomic
states in the weak field limit.

For the off-resonance cases of δ �= 0, the only branches shown are the ones
which approach the atomic states as ωR → 0. The limiting values for the
parameters are given in Table 3.1 below.

Table 3.1

ωR → 0 δ < 0 δ > 0
(ω below ω21) (ω above ω21)

cos θ → 0 1
sin θ → 1 0
θ → π/2 0

|t+〉 → |2〉 |1〉
|t−〉 → − |1〉 |2〉

Thus the branches shown in the figure are — for δ > 0, E+ = E+
1 and

E− = E−
2 ; while for δ < 0, E+ = E+

2 andE− = E−
1 . The other components

(not shown) are spaced apart by ±�ω.
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For the exact resonance case of δ = 0, it is not possible to identify the
eigenvalues E+ and E− with either �ω1 or �ω2, because even in the limit
ωR → 0, the eigenfunctions |t+〉 and |t−〉 are linear combinations of |1〉 and
|2〉.∗ In fact, in this limit, cos θ = sin θ = 1/

√
2; and the two dressed states

have equal probabilities of being in either atomic state.

We emphasize that the two eigenstates are coherent superpositions of the
two atomic states |1〉 and |2〉. They both contain components with two
frequencies which differ by ω the driving frequency. Often people refer to
the components of these states which is roughly ω from ω1 or ω2 (i.e. which
is farther from the nearest unperturbed state) as a “virtual level.” Do not
fall into the trap of thinking that it has a reality of its own; neither its
amplitude nor phase, and especially not its population, are distinct and
independent—it is only a part of one of the two dressed states. Only the
dressed states have a population, independent phase, and amplitude, etc.

The + and − branches are sometimes referred to as

E+ weak field seeker

E− strong field seeker

This is because the force on the atom will be in the direction of weak (or
strong) field in a situation where the field intensity is not constant.

Also, do not be upset by the fact that the E− energy level appears above
E+ when δ > 0; in the dressed atom picture the number of photons in the
field is uncertain (because the electric field is known), and consequently
energies of the atom may be adjusted modulo �ω.

∗This is similar to the classical coupled oscillators that we saw in Chapter 2, “Prelimi-
naries,” where the oscillators were degenerate, and the coupling led to normal modes
that were linear combinations of the two displacements.
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5. Eigenenergies versus detuning at fixed strength

We now consider the dependence of the eigenenergies on ω at fixed field
strength. We shall concentrate on the region near resonance, ω ≈ ω21,
going far enough from resonance so that |δ| 	 ωR.

When the detuning is many times ωR, then |ωR/δ| � 1 and ω′
R ≈ |δ|. As

a consequence, the eigenenergies in (3.27) become independent of ωR and
have the following values

|δ| 	 ωR δ < 0 δ > 0

E+
1 = �

(
ω1 +

ω′
R

2
− δ

2

)
→ �(ω1 − δ) �ω1

E−
1 = �

(
ω1 − ω′

R

2
− δ

2

)
→ �ω1 �(ω1 − δ)

E+
2 = �

(
ω2 +

ω′
R

2
+

δ

2

)
→ �ω2 �(ω2 + δ)

E−
2 = �

(
ω2 − ω′

R

2
+

δ

2

)
→ �(ω2 + δ) �ω2

We have already mentioned that in the dressed atom picture the eigenvalues
are arbitrary up to a multiple of �ω—an ambiguity which arises from the
fact that the eigenvalue is for atom plus field, and the number of photons
in the field is uncertain when the field strength is known. On this account,
we show in Fig. 3.6(a) the behavior of all four energies in (3.27), even
though only two of them tend to ω1 or ω2 as ωR → 0. Often a cut is made
through this figure at a particular value of ω (and δ), and the shifts from
the unperturbed atomic eigenenergies are displayed. This is shown in Fig.
3.6(b).

The figure shows that oscillating fields exactly on resonance split the states
symmetrically, whereas off-resonant fields do not. The splitting of a partic-
ular state is always ω′

R, and the difference between the upper (and lower)
components of the shifted states is ω, the frequency of the applied field.
The solid circles represent the steady-state populations in the two dressed
states. The populations in the two states are equal on resonance, which
implies that the average energy shift is zero. On the other hand, the occu-
pancy of the states is different off resonance, with a larger value for the state
which is closer to the unperturbed atomic state. In fact, the occupancy of
this state approaches unity as the detuning is increased.
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Figure 3.6: (a) Dressed-state energies as a function of detuning for fixed
field strength. The separation between E−

2 and E−

1 (and between E+
2 and

E+
1 ) is always �ω. The zero of �δ is at �ω21. (b) Cut through figure in

(a) showing shifted states for the δ = 0 and δ > 0 cases. The solid circles
represent the steady-state population in each state, equal on resonance
and unequal off resonance.



106 Atoms

From the expressions for the eigenenergies in (3.27), we see that the shifts
of the dressed states from the unperturbed atomic states are (for both signs
of detuning)

W± = �
ω′
R ± |δ|
2

Since the occupancy of the state with the smaller shift approaches unity at
large detunings, the average shift is the shift of this dressed state. Thus
the AC Stark shift of the atomic state using the dressed atom picture is

ΔE = �
ω′
R − |δ|
2

= �

√
ω2
R + δ2 − |δ|

2
≈ ω2

R

4|δ| for |δ| 	 ωR (3.28)

which matches the oscillator strength expression given in Eq. (3.23) in this
limit.

6. Atom plus field basis states

In discussing the dressed atom we have concentrated on the atom, even
though we should really be talking about the atom plus field system. This
is the source of the “ambiguity” by m� in the eigenenergy, and it suggests
using a basis comprised of the field with m photons plus the atom in |1〉 or
|2〉. Then the basis states become |m, 1〉 or |m, 2〉 where m is the number
of photons in the field. The associated eigenenergies are denoted by E1,2

m .

Due to the quantum nature of the field, m is not knowable exactly (since
the field strength is). However, it is possible to circumvent this problem
by writing m = n + 1 or n + 2 or n − 1, where n is a large unknowable
number, but the differences between various eigenenergies are accounted
for explicitly. The E2,1

m are then written with the energy n� subtracted off.
Thus

E2,1
n+k = �ω2,1 + k�ω

For example, when the resonance condition of ω = ω21 is met, E1
n+1 will

have the same energy as E2
n.

7. Spectrum of fluorescence from dressed atom

If the driving field is weak (ωR � Γ), then the system absorbs and emits
only one photon at a time and must emit radiation at exactly the same
frequency as the driving field in order to conserve energy (Doppler shift
and atomic recoil are neglected for now). However, when the driving field
is strong (ωR 	 Γ), then several photons may be absorbed and emitted
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simultaneously and energy conservation restricts only the sum of the ener-
gies of the emitted photons. This implies, for example, that the spectrum
of two simultaneous fluorescent photons must be symmetrical about the
driving frequency. The frequencies of peaks in the spectrum may be found
from the positions of the induced energy levels in the dressed atom picture.

When the driving field is at resonance, we have seen in Fig. 3.6 that the
splittings are symmetric about the unperturbed states. Thus all four com-
ponents of the fluorescence have the same intensity, leading to a spectrum
with twice the intensity in the central peak as in the side peaks. Off-
resonance excitation produces a non-broadened δ-function spectral compo-
nent at the driving frequency (Rayleigh component), in addition to the
symmetric peaks about the driving frequency. The two kinds of spectra are
shown in Fig. 3.7.

Figure 3.7: Spectra of spontaneous fluorescence from strongly driven
atom, for the cases of driving on resonance and above resonance.
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H. Problems

1. Quantum defect

Use the data given in Table 3.2 to calculate the quantum defect for the
following levels of sodium: n = 3, 4, 6, 10 and � = 0, 1, 2, 3. For each � plot
δ� as a function of n.

SODIUM

11 electrons Z = 11
Ground state 1s2 2s2 2p6 3s 2S1/2

3 s 2S1/2 41449.65 cm−1 Ionization Potential: 5.138 volts

Config. Term J Level Config. Term J Level

3s 3s 2S 1/2 0.00 6h 6h 2Ho 41/2

51/2
38403.4

3p 3p 2Po
1/2

11/2

16956.183
16973.379

7p 7p 2Po
1/2

11/2

38540.40
38541.14

4s 4s 2S 1/2 25739.86 8s 8s 2S 1/2 38968.35

3d 3d 2D
21/2

11/2

29172.855
29172.904

7d 7d 2D
21/2

11/2

39200.962
39200.963

4p 4p 2Po
1/2

11/2

30266.88
30272.51

7f 7f 2Fo 21/2

31/2
39209.2

5s 5s 2S 1/2 33200.696 8p 8p 2Po
1/2

11/2

39298.54
39299.01

4d 4d 2D
21/2

11/2

34548.754
34548.789

9s 9s 2S 1/2 39574.51

4f 4f 2Fo 21/2

31/2
34588.6 8d 8d 2D

21/2

11/2
39729.00

5p 5p 2Po
1/2

11/2

35040.27
35042.79

8f 8f 2Fo 21/2

31/2
[39734.0]

6s 6s 2S 1/2 36372.647 9p 9p 2Po
1/2

11/2

39794.53
39795.00

5d 5d 2D
21/2

11/2

37036.781
37036.805

10s 10s 2S 1/2 39983.0

5f 5f 2Fo 21/2

31/2
37057.6 9d 9d 2D

21/2

11/2
40090.57

5g 5g 2G
31/2

41/2
37060.2 9f 9f 2Fo 21/2

31/2
40093.2

6p 6p 2Po
1/2

11/2

37296.51
37297.76

10p 10p 2Po
1/2

11/2
40137.23

7s 7s 2S 1/2 38012.074 11s 11s 2S 1/2 40273.5

6d 6d 2D
21/2

11/2

38387.287
38387.300

10d 10d 2D
21/2

11/2
40349.17

6f 6f 2Fo 21/2

31/2
38400.1 10f 10f 2Fo 21/2

31/2
40350.9

Table 3.2
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The data are reproduced from NIST Atomic energy level tables. The energy
of each level corresponding to a term is given in cm−1 above the ground
state (3S). For levels with fine structure use the average value of the energies
when weighted by the mj multiplicity. This is the “center-of-gravity” of the
level. Use the sodium Rydberg constant

RNa = 109 734.69 cm−1

Report the quantum defects to a number of significant figures sufficient to
see the trends in the data.

Solution

The quantum defect is defined using

En,� = − RNa

(n− δ�)2
=⇒ δ� = n−

√
RNa

|En,�|

En,� can be found from the energy level data. Since the levels are given in
terms of the shift from the ground state ΔEn,� it is related to the energy
(negative because these are bound states) as

En,� = Wn,� − IP

where

Wn,� =

∑
(2J + 1)ΔEn,�∑

(2J + 1)

is the weighted average for levels with fine structure and IP is the ionization
potential.

Using the values

RNa = 109 734.69 cm−1 and IP = 41 449.65 cm−1

we get the quantum defects as noted in Table 3.3 and Figure 3.8.

Table 3.2

n
δ�

δ0 δ1 δ2 δ3

3 1.372910 0.882865 0.0102848 does not exist

4 1.357063 0.8669295 0.01232579 0.0007673

6 1.350907 0.8592408 0.01389949 0.00134215

10 1.350147 0.856014 0.0142453 0.006387
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Figure 3.8: Shows a plot of the quantum defects versus n.
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2. Classical electron bound by a harmonic potential

Consider a classical electron bound by the harmonic potential U = 1
2kx

2.

(a) Find the DC polarizability in the presence of a static electric field E◦.
(b) Find the oscillator strength of this system from the DC polarizability.

(c) Show that the energy E = Ufield + Uint =
1
2Ufield.

(d) Find the AC polarizability α(ω) in the presence of an AC field of the
form E◦ cosωt, for ω not close to ω◦.

Solution

(a) The equilibrium position of the electron shifts by Δx in the presence
of the electric field, and this induces a dipole moment eΔx.

Equating the harmonic force to the electric force we have

kΔx = −e E◦ =⇒ Δx = − e

k
E◦

This gives the induced dipole moment as

�P = −eΔx =
e2

k
E◦

which yields the DC polarizability

α◦ =
e2

k
=

e2

mω2◦

(b) From oscillator strength theory

α◦ =
e2

m

f

ω2◦

This gives

f =
mω2

◦
e2

α◦ =
mω2

◦
e2

(
e2

mω2◦

)
= 1

which is expected from the definition of oscillator strength.

(c) The two energies are

Ufield = − �P · �E = −
(
e2

k
E◦

)
E◦ = −e2

k
E2
◦

Uint =
1

2
k (Δx)2 =

1

2
k

(
e2E2

◦
k2

)
=

e2

2k
E2
◦
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Therefore the total energy is

E = −e2

k
E2
◦ +

e2

2k
E2
◦ = − e2

2k
E2
◦ =

1

2
Ufield

(d) The equation of motion for the electron in the AC field is

ẍ+ ω2
◦x = −e E◦

m
cosωt

For ω not close to ω◦ (far from resonance), the response of the driven
oscillator is such that the phase difference from the drive is either 0 (in
phase) or π (out of phase). Therefore the motion is of the form

x = ±x◦ cosωt

Substituting into the equation of motion, we get

−x◦ ω2 + x◦ ω2
◦ = −eE◦

m
=⇒ x◦ =

eE◦
m (ω2 − ω2◦)

Therefore the induced dipole moment is

�P = −ex◦ cosωt = − e2

m(ω2 − ω2◦)
E◦ cosωt

which gives the AC polarizability as

α(ω) = − e2

m(ω2 − ω2◦)
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3. Oscillator strength

(a) Consider an alkali atom with essentially all of the oscillator strength
from the ground state saturated by the resonance ns → np transition
(i.e. fns,np = 1 and fns,np′ �=p ∼ 0). If this transition has frequency ωps

find the critical electric field Ecrit beyond which the Stark effect is no
longer quadratic (take this to be where |〈np|H ′|ns〉| = �ωps). Express
the result in V/cm where ωps is expressed in atomic units.

(b) What is Ecrit for Na with transition wavelength of 589 nm?

Solution

(a) The critical electric field Ecrit is defined such that

|〈np|H ′|ns〉| = �ωps where H ′ = ezEcrit
This implies that

Ecrit = �ωps

|〈np|ez|ns〉|
From the expression for oscillator strength

fns,np =
2mωps

e2�
|〈np|ez|ns〉|2 = 1 =⇒ |〈np|ez|ns〉| =

√
e2�

2mωps

Therefore

Ecrit =
√

2m�ω3
ps

e2

The atomic unit of frequency is me4/�3, thus the critical field when ωps

is expressed in atomic units is

Ecrit =
√

2m�

e2

(
me4

�3

)3/2 (
ωau
ps

)3/2
= 7.27× 109

(
ωau
ps

)3/2
V/cm

(b) For the 3p → 3s transition in Na, λ = 589 nm, therefore

ωps = 3.2× 1015 rad/s and ωau
ps =

3.2× 1015

4.1× 1016
= 0.078

Hence the critical field is

Ecrit = 1.58× 108 V/cm
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4. Dressed atoms

Show that the dressed atom gives the same lowest eigenfunction as first-
order perturbation theory at low field intensity (pick δ < 0).

Solution

We start with the Hamiltonian

H =
�

2

[ −ω21 ωRe
iωt

ωRe
−iωt ω21

]

(i) Dressed atom

Guessing solutions of the form

φ(t) =

[
c1e

+iωt/2

c2e
−iωt/2

]
and substituting into Schrödinger’s equation, we get[

ċ1e
+iωt/2 + c1

iω
2 e+iωt/2

ċ2e
−iωt/2 − c2

iω
2 e−iωt/2

]
= − i

2

[ −ω21c1e
+iωt/2 + ωRc2e

+iωt/2

ωRc1e
−iωt/2 + ω21c2e

−iωt/2

]

This gives

ċ1 +
ic1ω

2
=

iω21c1
2

− i

2
ωRc2

ċ2 − ic2ω

2
=

−iωRc1
2

− i

2
ω21c2

or

ċ1 =
i

2
(−δc1 − ωRc2)

ċ2 =
i

2
(−ωRc1 + δc2)

Written in matrix form, this is

i�

[
ċ1
ċ2

]
=

�

2

[
δ ωR

ωR −δ

] [
c1
c2

]
Eigenvalues are obtained by diagonalizing the matrix[

δ ωR

ωR −δ

]
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which gives∣∣∣∣ δ − λ ωR

ωR −δ − λ

∣∣∣∣ = 0 =⇒ λ2 − δ2 − ω2
R = 0

This yields the eigenvalues as

λ = ±
√
ω2
R + δ2

The lowest eigenfunction is given by λ = −
√
ω2
R + δ2, which gives the

coefficients as

δc1 + ωRc2 = −
√
ω2
R + δ2 c1 =⇒ c2 = −δ +

√
ω2
R + δ2

ωR
c1

Thus the eigenfunction is

|φ(t)〉 = e+iωt/2 |1〉 − δ +
√
ω2
R + δ2

ωR
e−iωt/2 |2〉

For δ < 0 and weak field (ωR � |δ|), the eigenfunction becomes

|φ〉dressed = e+iωt/2 |1〉 − −|δ|+ |δ|+ ω2
R/2|δ|

ωR
e−iωt/2 |2〉

= e+iωt/2 |1〉 − ωR

2|δ|e
−iωt/2 |2〉

= e+iωt/2 |1〉+ ωR

2δ
e−iωt/2 |2〉

(ii) First-order perturbation theory

From the Hamiltonian we have

ȧ
(1)
2 (t) =

1

i�

�ωR

2
e−iωta

(0)
1 (t) eiω21t =

ωR

2i
e−iδta

(0)
1 (t)

Using the initial conditions of a
(0)
1 (0) = 1 and a

(0)
2 (0) = 0, we get

a
(1)
2 (t) =

ωR

2i

∫ t

0

e−iδt′ dt′ =
ωR

2i

e−iδt′

−iδ

∣∣∣∣∣
t

0

=
ωR

2δ
e−iδt

Therefore the coefficients are

a1(t) = (1 + 0 + . . .)

a2(t) =
(
0 +

ωR

2δ
e−iδt + . . .

)
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and the first-order eigenfunction is

|φ(1)〉pert theory = e−iω1t |1〉+ ωR

2δ
e−i(ω2+δ)t |2〉

= e−i(ω−2ω1)t/2
[
e+iωt/2 |1〉+ ωR

2δ
e+i(ω+2ω1−2ω2−2δ)t/2 |2〉

]
= e−i(ω−2ω1)t/2

[
e+iωt/2 |1〉+ ωR

2δ
e−iωt/2 |2〉

]
= e−i(ω−2ω1)t/2 |φ〉dressed

This shows that the two wavefunctions are the same (up to an irrelevant
phase factor).



Chapter 4

Nucleus

I
n the previous chapter, we have discussed atoms as if the nuclei were point
charges with no structure and infinite mass. Real nuclei have mass, pos-

sibly non-zero angular momentum �I, and a charge which is spread out over
a finite volume. As a result, they possess a magnetic dipole moment and
an electric quadrupole moment coupled to the electronic angular momen-
tum, and possibly higher moments as well. All of these properties affect
the atomic energy levels, at a level about 10−5 Ry—these effects will be
discussed in this chapter.

The finite size of the nucleus produces only a small shift of the spectral
line, and thus the only quantity accessible to measurement is the variation
of the line position between different isotopes of the same element. Laser
spectroscopy makes it possible to measure such “isotope shifts” to at least
10−9 Ry, or 10−3 to 10−4 of the shift. The moments of the nucleus couple to
its spin which interacts with the angular momentum of the rest of the atom.
This splits the energy levels of the atom according to the value of F , the
quantum number corresponding to the total angular momentum (�F = �I +
�J). The resulting hyperfine structure can be measured with almost limitless
precision (certainly < 10−18 Ry) using the techniques of RF spectroscopy.
Hyperfine transitions in Cs and H are currently the best available time
and frequency standards. Generally speaking magnetic dipole interactions
predominate in atoms and electric quadrupole interactions in molecules.

With the exception of the mass shift, the manifestations of nuclear structure
in atomic spectra provide important information on the static properties of
nuclei which are among the most precise information about nuclei. Unfor-
tunately the great precision of the atomic measurements is generally lost

117
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in deducing information about nuclear structure because the core electrons
affect the magnetic and electric interactions of the valence electrons with
the nucleus.
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A. Isotope effects

When comparing the spectral lines originating from atoms whose nuclei
differ only in the number of neutrons (i.e. different isotopes of the same
element), effects due to the finite mass and volume of the nucleus become
apparent; even neglecting hyperfine structure (by taking the center of grav-
ity of the observed splitting) the spectral lines of the different isotopes vary
slightly in position—generally at the many parts per million level. The dif-
ference between the lines of the various isotopes is referred to as the isotope
shift: it is observed to have both positive (i.e. a heavier isotope has a higher
energy spacing) and negative values.

General speaking, light elements (A < 40) have positive frequency shift,
whereas heavy elements (A > 60) have negative shifts. This reflects the
contribution of two distinct physical processes to the shift—the finite mass
shift (almost always positive), and the nuclear volume shift (almost always
negative). These will be discussed separately.

1. Mass effect

The origin of the mass effect is obvious from the Bohr energy level formula

EN = E◦
n

[
M

M +m

]
≈ E◦

n

[
1− m

M

]
where the term involving m/M comes from solving the two body electron-
nucleus (of massM) system using the relative coordinate and the associated
reduced mass. Obviously increasing M increases EN .

In two (or more) electron atoms the situation becomes more complicated
due to the relative motion of the electrons. It would, for example, be
possible to arrange the electrons symmetrically on opposite sides of the
nucleus in which case there would be zero isotope effect. The virial theorem
assures us that the mean value of the kinetic energy equals minus the total
energy, so if we treat the nuclear motion as a perturbation on a fixed nucleus
solution, the mass effect will be

ΔEN,M ≈ − P 2

2M
= − 1

2M

[∑
i

�pi

]2

= −m

M

⎡⎣ 1

2m

∑
i

p2i +
1

2m

∑
i�=j

�pi · �pj

⎤⎦
The first term is called the normal shift since (using the virial theorem
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again) it is

ΔENormal
N,M = −m

M
E◦

N

The second term is called the specific shift because it depends on the par-
ticular atomic state. ΔEspecific = 0 unless there are two or more valence
electrons. For configuration s� one gets

ΔEspecific
ns,n′� = (1− 2s)

m

M

3fns,n′�

2
�ωn′s′,n�

where fns,n′� is the oscillator strength.

Thus the specific shift has opposite signs for s = 1 and s = 0 states—a
reflection of the fact that the specific isotope shift is closely related to the
exchange interaction. The above equation also reflects the general result
that ΔEspecific is zero unless the two electrons are connected by an electric
dipole allowed transition (otherwise f will vanish). Furthermore the spe-
cific isotope shift is of the same order of magnitude as the normal isotope
shift—for f > 2/3, in fact, it can be larger (reversing the sign of the mass
dependence of the isotope effect.)

The preceding discussion shows that the fractional energy shift of a level
due to the mass of the nucleus decreases rapidly with increasing mass of
the nucleus. The normal part of this shift has a variation in the fractional
magnitude due to a change ΔM in the mass of the isotope of

ΔENormal
N,M+ΔM −ΔENormal

N,M

EN
=

[
m

M +ΔM
− m

M

]
≈ m

M

[
ΔM

M

]
which decreases as M−2, reaching 10 parts per million for a nucleus with
A = 54 (assuming ΔM = 1).

2. Volume effect

Inside the nucleus, the electrostatic potential no longer behaves like Ze/r,
but is reduced from this value. If the valence electron(s) penetrate signifi-
cantly into this region (e.g. for s electrons) then its energy will rise (relative
to the value for a point nucleus) because of this reduced potential. Adding
neutrons to the nucleus generally spreads out the charge distribution, caus-
ing a further rise in its energy. This reduction in the binding energy results
in a decrease of the transition energy and therefore to a negative mass
shift (assuming that the s state is the lower energy state involved in the
transition).

For an s state the density of the electron probability distribution at the
nucleus is given by the semi-empirical Fermi–Segŕe formula

|ψs(0)|2 =
Z2
aZ

πa3◦n∗3

[
1 +

∣∣∣∣∂δs∂n

∣∣∣∣] (4.1)
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where δs is the quantum defect and Zae is the charge of the atomic core.

Combining this with a model of the nuclear charge cloud results in the
following nuclear volume correction to the energy (of an s electron)

ΔEV
n = Z2

a

R∞
n∗3

[
1 +

∣∣∣∣∂δs∂n

∣∣∣∣]C (4.2)

with

C =
4(γ + 1)

[Γ(2γ + 1)]2
B(γ)

[
2Zr◦
a◦

]2γ
δr◦
r◦

where

γ =
√
1− α2Z2

Γ is a gamma function Γ(N + 1) = N ! and B(γ) is a factor that depends
on the nuclear charge distribution

B(γ) = (2γ + 1)−1 for a charge shell

= (2γ + 1)−1

[
3

2γ + 3

]
for a uniform charge

The nuclear radius is taken as (for atomic number A)

r◦ = 1.15× 10−13A1/2

so that

δr◦
r◦

=
δA

3A

There are obviously a number of assumptions in Eq. (4.2), and it should
not be expected to work as well as expression for the nuclear mass shift.
The observed shift is generally 1/2 to 3/4 of the one given above except for
non-spherical nuclei (e.g. rare-earth nuclei) which have anomalously large
shifts.
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B. Hyperfine structure

The fact that the nucleus is a charge cloud with angular momentum suggests
the possibility that it might possess magnetic and electric moments. Time
reversal and parity invariance restrict the possible magnetic moments to
dipole, octupole, . . . , i.e. odd values of � when the multipole moments
are expanded in the standard manner in terms of the spherical harmonics
Y�m’s; and the possible electric moments to monopole (total charge Ze),
quadrupole, hexadecapole, . . . , i.e. even values of �.

The hyperfine energy shift for a particular state is then written in a series
expansion (with progressively smaller corrections) as

W hfs = AK1 +BK2 + C K3 +DK4 + . . .

where A is the magnetic dipole hyperfine coupling constant, B is the elec-
tric quadrupole hyperfine coupling constant, C is the magnetic octupole
hyperfine coupling constant, D is the electric hexadecapole hyperfine cou-
pling constant, and so on. K’s are factors that depend on the quantum
numbers of the state.

The magnetic dipole and electric quadrupole interaction are dominant in
the hyperfine interaction. The magnetic dipole moment can be measured
only if the nucleus has I ≥ 1/2 and it splits only those levels for which
J ≥ 1/2. Similarly, the electric quadrupole interaction is observable only
when both I and J are ≥ 1.

1. Magnetic dipole

The magnetic moment of the nucleus is generally expressed in terms of the
nuclear magneton

μN =
e�

2mpc
=

μB

1836
= 0.762 kHz/G

and the nuclear g factor

�μN = gIμN
�I/�

To emphasize the fact that the nuclei are complex particles we note that
the g factors of proton and neutron are

gp = +5.586 and gn = −3.826

neither one of which is close to a simple integer.

The magnetic moment of the nucleus couples to the magnetic field produced
at the nucleus by the electrons in the atom. As a result �J and �I are coupled
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together to form �F , the total angular momentum of the entire atom

�F = �J + �I

The magnetic coupling between �J and �I adds a term to the Hamiltonian
for the magnetic dipole hyperfine structure

Hhfs
M = −�μN · �Bj

�Bj is proportional to �J , and is written in terms of a constant a as

�Bj =
a

μN

�J/�

Thus the hyperfine structure Hamiltonian becomes

Hhfs
M = −gIa �I · �J/�2 = A �I · �J/�2 (4.3)

Using a procedure similar to what was done for the case of spin-orbit cou-
pling in calculating the Landé g factor, we can show that

�I · �J =
1

2

(
|�F |2 − |�I|2 − | �J |2

)
Thus the energy shift for a state with quantum numbers F , I, and J is

W hfs
MD = A

F (F + 1)− I(I + 1)− J(J + 1)

2
(4.4)

The most important case of magnetic hyperfine structure occurs for atoms
with s electrons both because of their preponderance among materials that
are easy to handle experimentally and because the magnetic hyperfine in-
teraction is largest for them. In this case the electron cloud looks like an
isotropic region of magnetization. Using the spin magnetic moment of the
electron, the magnetization at a radius r is

�M(r) = �μe |ψs(r)|2 = −gsμB |ψs(r)|2 �S/�

The isotropic magnetization can be viewed as arising from the sum of a
small uniform sphere at the origin plus a hollow sphere containing the
remainder of the magnetization, as shown in Fig. 4.1.

A uniformly magnetized sphere produces a uniform B field inside

�B =
8π

3
�M

This fact may be used to show (by superposition) that a uniformly magne-
tized spherical shell has B = 0 inside, which means that the field due to the
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Figure 4.1: Decomposition of a spherically symmetric cloud of magneti-
zation for finding the magnetic field at its center.

hollow sphere part in the decomposition shown in Fig. 4.1 vanishes. Hence
the field is

�Bj = −8π

3
gsμB |ψs(0)|2 �S/�

so that the energy shift (taking gs = 2) is

W hfs
MDs = gIμN

8π

3
2μB |ψs(0)|2 �I · �S/�2

=
16π

3
gI

m

mp
μ2
B |ψs(0)|2 �I · �S/�2

=
8π

3
gI

m

mp
α2R∞a3◦ |ψs(0)|2 �I · �S/�2

Using Eq. (4.1) for |ψs(0)|2 one obtains

W hfs
MDs =

8α2gIZ
2
aZ

3n∗3
m

mp
R∞

[
1 +

∣∣∣∣∂δs∂n

∣∣∣∣]

This s-state interaction is sometimes called the “contact” (in the sense of
touch) term.

Now we consider the hyperfine interaction for states with � �= 0. These
states have zeros of the wave function at the origin (recall ψ ∼ r�), so the
magnetic field at the nucleus is generated by both the orbital motion and
the intrinsic magnetic moment of the electron

�Bj = �B� + �Bs

For simplicity, we do a calculation for a single electron. We evaluate the
fields using classical techniques since the quantum mechanical result is iden-
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tical.

�B�(0) ≡ 1

c

∫
I �dr × (−�r)

r3

=
−e

c

∫
�v × (−�r)

r3
← for an orbiting electron

= − e

mc

∫
�r ×m�v

r3

= −2μB

�
〈r−3〉 �L

�Bs(0) = − 1

r3
[�μe − 3 (�μe · r̂) r̂] ← magnetic field of a dipole

= −gsμB

�
〈r−3〉

[
−�S + 3(�S · r̂)r̂

]
so that the total field is

�Bj(0) = −2μB

�
〈r−3〉

[
�L− gs

2
�S +

3

2
(�S · r̂)r̂

]
We need to evaluate the projection of �Bj along �J . (The following calculation
is much like the calculation for the Landé g factor.)

〈 �J · �Bj〉 = 〈(�L + �S) · �Bj〉

= −2μB

�
〈r−3〉 1

�2
〈|�L|2 − |�S|2 + 3(�S · r̂)r̂ · (�L + �S)〉

= −2μB

�
〈r−3〉

[
�(�+ 1)− s(s+ 1) +

3

�2
〈(�S · r̂)2 + (r̂ · �L)〉

]
where we have taken gs = 2 exactly. Using

s(s+ 1) = 3/4 〈(�S · r̂)2〉 = �
2/4 r̂ · �L = 0

we obtain

〈 �J · �Bj〉 = −2μB

�
〈r−3〉 �(�+ 1)

so after all this work, the field turns out to depend only on �.

To find the constant A in the Hamiltonian in Eq. (4.3) we have

Hhfs
MD = A �I · �J/�2

= −gIμN

�2

�I · �J
|�J |

〈
�J · �Bj

| �J |
〉
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Therefore

A = 2gIμNμB 〈r−3〉 �(�+ 1)

J(J + 1)

= 2gI
m

mp

μ2
B

a3◦
〈a

3
◦
r3

〉 �(�+ 1)

J(J + 1)

= gI
m

mp
α2R∞ 〈a

3
◦
r3

〉 �(�+ 1)

J(J + 1)

Using the following relation which is appropriate for an atom with one
valence electron

〈a
3
◦
r3

〉 = Z2
aZ

n∗3 �(�+ 1)(�+ 1/2)
(4.5)

one gets

A =
gIZ

2
aZ

n∗3(�+ 1/2)J(J + 1)

m

mp
α2R∞ (4.6)

The above expressions for the hyperfine shifts do not contain corrections for
nuclear size (∼ 10−4), and do not contain relativistic corrections which can
be 10% for Z = 30 and a factor of 2 for Z = 80. In addition the magnetic
moment of the nucleus causes a slight unpairing of the core electrons (i.e.
mixes in other core configuration) which is called core polarization and
which changes the magnitude dipole interaction.

2. Electric quadrupole

If the nucleus does not have a spherically symmetric charge distribution it
probably has a non-zero electric quadrupole moment

Q =
1

e

∫
dV ρ(�r)[3z2 − r2]

which is < 0 for an oblate charge distribution. In contrast to the nuclear
magnetic dipole, which is predominantly determined by the nucleons, Q is
sensitive to collective deformations of the nucleus. Some nuclei are observed
with 30% differences between polar and equatorial axes, then Q can be
comparable to 〈r2〉, i.e. ≈ 10−24 cm2.

The interaction energy of the quadrupole moment Q with the electron can
be found by expanding the term |�re − �rN |−1 in spherical harmonics and
evaluating the resulting expressions in terms of Clebsch–Gordan coefficients.
The resulting energy shifts are then

W hfs
EQ = BK(K + 1)
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where

B =
3(Q/a2◦)

8I(2I − 1)J(J + 1)
〈r−3〉 R∞ (4.7)

and

K = [F (F + 1)− I(I + 1)− J(J + 1)] (4.8)

[Note that the constant appearing in Eq. (4.4) for the hyperfine shift due
the magnetic dipole interaction is K/2.]

The term 〈r−3〉 can be estimated from Eq. (4.5).

The preceding expressions, like the corresponding ones for the magnetic
interactions, have several significant omissions. The most important are
relativistic corrections and core shielding corrections.

3. Order-of-magnitude of hyperfine structure

The expression for the magnetic hyperfine structure in Eq. (4.6) is quite
similar to the fine structure expression in Eq. (3.11) in Chapter 3. Their
ratio is

W hfs
MD

W fs
≈ gI

m

mp

1

Z

which is typically 10−3 to 10−4.

For a neutral atom (Za = 1), Eq. (4.6) gives

W hfs
MD

�
= gI

m

mp

Z

(� + 1/2)J(J + 1)
α2En

n∗

≈ (�+ 1/2)−3 GHz

with a factor of 10 spread in either direction.

The quadrupole interaction is generally considerably smaller. Using 〈r−3〉
from Eq. (4.5) in Eq. (4.7), one gets

B =
3Z

8I(2I − 1)J(J + 1)

Q

a2◦

En

n∗�(�+ 1)(�+ 1/2)

≈ Z
10−24

10−16
En(�+ 1/2)−3

Hence

B/� ≈ 0.01Z(�+ 1/2)−3 GHz
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Thus one generally expects that magnetic hyperfine structure dominates hy-
perfine structure in atoms. The opposite is generally true in molecules for
two reasons—(i) unpaired electrons are relatively rare, and (ii) the molecu-
lar binding mechanism can create large electric field gradients at the sites
of the nuclei.

In concluding this discussion of hyperfine structure in atoms, it is im-
portant to realize that the preceding formulae are (except in hydrogenic
atoms) only approximations and never permit one to extract the nuclear
dipole or quadrupole moments with the full accuracy of laser spectroscopy
experiments—let alone RF spectroscopy experiments. Thus the constants
A,B, . . . in the combined hyperfine energy formula

W hfs = W hfs
MD +W hfs

EQ + . . .

= AK/2 +BK(K + 1) + . . .

[with K defined in Eq. (4.8)] should be regarded primarily as empirical
constants from the standpoint of atomic physics. Even if the problems of
connecting A and B with the nuclear moments could be solved, the principal
result would be better measurements of nuclear properties.

4. Zeeman shift in weak magnetic field

The treatment of the energy shift of an atom with hyperfine structure in a
magnetic field—called the Zeeman shift—closely resembles what was done
in the LS-coupling scheme.

In the presence of a weak magnetic field, the hyperfine interaction couples �J
and �I together to form �F , the total angular momentum of the atom. Thus
the good quantum numbers are F and mF , together with J and I. The
total magnetic moment of the atom is the sum of the electronic and the
nuclear moments

�μa = gjμB
�J − gIμN

�I

where the minus sign is because the electron and nuclear charges have
opposite signs.

Thus the Zeeman shift of an |F,mF 〉 state in the presence of a weak mag-
netic field of strength B◦ is

WB = gFμBmFB◦ (4.9)

where gF is the Landé g factor of the atom. Using a procedure similar to
what was done for calculating gj in Chapter 3, “Atoms,” this factor can be
derived as

gF =

[
gj − gI

μN

μB

]
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
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If gj is not zero, the second term in the round brackets can be neglected
because of the factor μN/μB = 1/1836.

5. Decoupling of hyperfine interaction by magnetic field

If a sufficiently strong magnetic field is applied to the atom, it attempts to
decouple �J and �I from each other and to force them to precess about its
direction. F is no longer a good quantum number, and mj and mI become
almost good. For the hyperfine interaction, this decoupling is called the
Back–Goudsmit effect. Obviously, this has the same physics as the Paschen–
Back effect—the decoupling, also by a magnetic field, of �L and �S from each
other and the concomitant destruction of J as a good quantum number.
Owing to the fact that �L and �S are coupled by an order of μ2

B/a
3
◦, whereas

�J and �I are coupled by an order of μNμB/a
3
◦, the hyperfine interaction is ∼

μB/μN = 1836 times weaker than the spin orbit coupling and consequently
can be decoupled by much weaker magnetic fields. Setting the interaction
energy μBBdecoup = a2H(μN/μB) gives Bdecoup = 136 G as the order of
magnitude of the field needed to decouple hyperfine interactions. Owing to
the fact that I is often greater than 1 and gI ∼ 4, fields several times larger
are generally required.

We now discuss the decoupling of the hyperfine structure in detail. To begin
with, the interaction Hamiltonian in the presence of a magnetic field B◦ẑ
is

H ′ = ah�I · �J/�2 + (gjμBmj − g′IμBmI)B◦

where the constant a is in frequency units (Hz), and g′I is defined as

g′I = gI
m

mp
=⇒ �μN = g′IμB

�I/�

Thus g′I is 1836 times smaller than the usual nuclear g factor due to the
replacement of μN by μB—a replacement which facilitates seeing the de-
coupling of �I and �J .

If we now define

Field parameter x′ ≡ gjμBB◦/ah

Relative nuclear moment α ≡ gI/gj

and note that the projection of the total angular momentum m = mI +mj

is always a good quantum number, then we get for each value of m

H ′
m = ah

[
�I · �J/�2 + x′ (mj − αmI)

]
= ah

[
−αmx′ + �I · �J/�2 +mj (α+ 1)x′

]
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This may be broken into diagonal and off-diagonal parts using

�I · �J = IzJz +
1

2

(
I+J− + I−J+

)
H ′

m

ah
= −x′αm+mmj −m2

j + x′ (1 + α)mj +
1

2�2
[
I+J− + I−J+

]
where we have used the standard raising and lowering operators for angular
momentum quantization, which obey the relationship

J± |J,m〉 =
√
J(J + 1)−m(m± 1) � |J,m± 1〉

thus giving the off-diagonal matrix elements.

Simplification to J = 1/2

For J = 1/2, there are only two states for each m except for |m| = I + J
which is the non-degenerate stretch state. The problem therefore reduces
to that of the standard 2× 2 Hamiltonian

H ′
m

ah
= −x2αm− 1

4
+

1

2

[ −d v

v d

]

where

d = m+ x′ (1 + α) and v =
√
I (I + 1)−m2 + 1/4

It is convenient to define the hyperfine level separation

ΔW = (I + 1/2)ah

so that

x =
1 + α

I + 1/2
x′ = (gJ + g′I)

μBB◦
ΔW

Physically x is the ratio of the magnetic interaction (Zeeman energy) to
the hyperfine separation.

Using these we get the Breit–Rabi formula

E±
m =

ΔW

2

[
− 1

2I + 1
±

√
1 +

4m

2I + 1
x+ x2

]
− g′ImμBB◦

where the + sign is for F = I + 1/2 and − sign is for F = I − 1/2.

There are several noteworthy points about this formula.
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(i) The center of gravity of all the lines is zero.

(ii) For m = 0, the field dependence is quadratic as x → 0.

(iii) For the stretch states the square root factors exactly, giving a linear
Zeeman structure at all field strengths.

The Breit–Rabi formula will be seen in detail in the problem at the end of
this chapter. We will consider the case of I = 3/2 and J = 1/2, which are
typical values for many alkali atoms on the D1 line.
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6. Hyperfine anomaly

The hyperfine anomaly—commonly denoted by ε—arises due to the effects
of an extended nucleus, which is manifested by the differences between the
hypothetical point-like and actual hyperfine interaction. The modification
is due to two effects:

(i) The modification of the electron wavefunction by the extended nuclear
charge distribution, called the Breit–Rosenthal–Crawford–Schawlow
correction εBR.

(ii) The extended nuclear magnetization. This effect was first anticipated
by Kopfermann and thought to be too small to be observed. How-
ever, it was experimentally observed by Bitter; following this it was
calculated by A. Bohr and V. Weisskopf, and is hence known as the
Bohr–Weisskopf effect εBW.

If we denote the point-like hyperfine interaction constant by apt, then

a = apt (1 + εBR) (1 + εBW)

Thus the ratio of the interaction constant for two isotopes is

a1
a2

=
gI(1)

gI(2)

[1 + εBR(1)] [1 + εBW(1)]

[1 + εBR(2)] [1 + εBW(2)]

Using the fact that the correction is small, the above expression is written
as

a1
a2

=
gI(1)

gI(2)

[
1 + 1Δ2

]
where we have defined the differential anomaly between the two isotopes as

[
1 + 1Δ2

]
=

[1 + εBR(1)] [1 + εBW(1)]

[1 + εBR(2)] [1 + εBW(2)]

Precise values of the hyperfine interaction constants and independently mea-
sured g factors in the two isotopes are thus needed to obtain the differential
hyperfine anomaly.
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C. Problems

1. Hyperfine coupling investigated

The Hamiltonian for an atom in a magnetic field B◦ẑ may be written as

H = ah �I · �J/�2 + (gjμBmj − g′IμBmI)B◦

First restrict attention to the case J = 1/2 but arbitrary I.

(a) Low field (x ≈ 0)

(i) Show that the spacing between the levels

F+ = I + 1/2 and F− = I − 1/2

is ΔW = a�F+.

(ii) Find the center-of-mass of all states defined as

Ecm =

∑
i giEi∑
i gi

where gi is the multiplicity of the level.

Defining

x = (g′I + gj)μB B◦/ΔW

we get the Breit–Rabi formula for the eigenenergies (m = mI +mj)

E±
m =

a�F+

2

[
− 1

2F+
±

√
1 +

2mx

F+
+ x2

]
− g′ImμB B◦

Now specialize to I = 3/2 (for rest of problem).

(b) The two F values are 1 and 2. Find the corresponding g factors g1 and
g2 (assume g′I � gj).

(c) High field (x 	 1)

(i) What are the good quantum numbers here?

(ii) Find the energies of the corresponding states.

(iii) Does the center-of-mass rule [in (ii) above] still hold?

(d) Show on a figure the energies vs x. Use the non-crossing rule to advan-
tage (levels of the same m do not cross). Label the lines with quantum
numbers at low and high fields and indicate m.
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(e) Field independent transitions (useful in experiments)

(i) Show on your figure the three (magnetic) dipole transitions (se-
lection rules Δm = 0,±1) which are field independent at interme-
diate field (0 < x < 1).

(ii) Show two more at very high field (x 	 1).

(iii) For Na (I = 3/2, g′I = 2.22μN/μB), find the magnetic field for
one low field transition.

(iv) Can you find a dipole transition whose frequency is independent
of the hyperfine separation 2ah? Indicate it in your figure.

Solution

(a) (i) In the low field limit, the hyperfine interaction couples �I and �J to

form �F

�F = �I + �J

Using

�F · �F =
(
�I + �J

)
·
(
�I + �J

)
= �I · �I + 2�I · �J + �J · �J

we get

�I · �J =
1

2

(
�F 2 − �I2 − �J2

)
and the hyperfine interaction part of the Hamiltonian as

H ′
hyp =

ah

2�2

(
�F 2 − �I2 − �J2

)
Thus the energy shift of a level with quantum numbers I, J, F is

Ehyp =
ah

2
[F (F + 1)− I(I + 1)− J(J + 1)]

For J = 1/2, the two hyperfine levels have F values of

F+ = I +
1

2
and F− = I − 1

2

Hence their separation is

ΔW =
ah

2

[(
I +

1

2

)(
I +

3

2

)
−

(
I − 1

2

)(
I +

1

2

)]
=

ah

2
2

(
I +

1

2

)
= ahF+
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(ii) For J = 1/2, the energies can be written as

E+ =
ah

2

[(
I +

1

2

)(
I +

3

2

)
− I (I + 1)− 1

2

(
3

2

)]
E− =

ah

2

[(
I − 1

2

)(
I +

1

2

)
− I (I + 1)− 1

2

(
3

2

)]
Noting that the degeneracy of level |F 〉 is gi = 2F + 1, we get the
center-of-mass energy

Ecm =
(2F+ + 1)E+ + (2F− + 1)E−

2 (F+ + F− + 1)

The numerator of the above expression is

Num =

[
2

(
I +

1

2

)
+ 1

]
+

[
2

(
I − 1

2

)
+ 1

]
E−

= (2I + 2)E+ + 2I
(
E−)

= 2I
(
E+ − E−)

+ 2E+

= 2I · ah
2

[I + (−I − 1)] + 2 · ah
2

[I]

= −Iah+ Iah

= 0

Thus the center-of-mass energy is 0.

(b) The field parameter is defined as

x = (g′I + gj)μB B◦/ΔW

For low field (x � 1), the Breit–Rabi formula can be approximated as

E±
m ≈ −ah

4
± ahF+

2

(
1 +

mx

F+

)
− g′ImμBB◦

= −ah

4
± ahF+

2
± ahm

2
(g′I + gj)

μBB◦
ahF+

− g′ImμBB◦

Neglecting g′I this shows that

gF± = ± gj
2F+

Using s = 1/2 and � = 0, we get

gj = 1 +
J(J + 1) + s(s+ 1)− �(�+ 1)

2J(J + 1)
= 2

Therefore

g1 = −1/2 and g2 = +1/2
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(c) (i) In the high field regime (x 	 1), the magnetic field interaction

dominates over the �I · �J hyperfine interaction. Hence F is also no
longer a good quantum number, and the good quantum numbers are
I, J,mI ,mj, and m = mI +mj .

(ii) In this regime of x 	 1, the Breit–Rabi formula can be approxi-
mated as

E±
m ≈ ahF+

2

[
1

2F+
± x

(
1 +

2m

2xF+

)]
− g′ImμBB◦

Specializing to the case of I = 3/2 or F+ = 2, we get

E±
m = ah

[
−1

4
± x

(
1 +

m

2x

)]
− g′ImμBB◦

For m = ±2, the square root term in the Breit–Rabi formula factorizes
completely

E(2,±2) = ah

[
−1

4
+

√
1± 2x+ x2

]
± 2g′IμBB◦

= ah

[
−1

4
+ (1± x)

]
± 2g′IμBB◦

to give the energies of these states as

E(2,±2) =
3ah

4
± xah± 2g′IμBB◦

The energies of the other states are

F = 2 : E(2,m) =
ah

2

(
m− 1

2

)
+ xah− g′ImμBB◦

F = 1 : E(1,m) = −ah

2

(
m+

1

2

)
− xah− g′ImμBB◦
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Using these relations we get the energies of all the states as

E(2,+2) = +
3

4
ah+ ahx− 2g′IμBB◦

E(2,+1) = +
1

4
ah+ ahx− g′IμBB◦

E(2, 0) = −1

4
ah+ ahx

E(2,−1) = −3

4
ah+ ahx+ g′IμBB◦

E(2,−2) = +
3

4
ah− ahx+ 2g′IμBB◦

E(1,+1) = −3

4
ah− ahx− g′IμBB◦

E(1, 0) = −1

4
ah− ahx

E(1,−1) = +
1

4
ah− ahx+ g′IμBB◦

(iii) Since the magnetic sublevels are non-degenerate, gi = 1 for all
the above states. The center-of-mass energy is thus just the sum of
the above energies, which its easy to see is 0. This implies that the
center-of-mass rule still holds.
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(d) Figure 4.2 below shows a plot of the Breit–Rabi formula as a function
of x, for the case of I = 3/2 and J = 1/2 considered here.

��

����

�

���

�

��� � ���

Figure 4.2: Plot of Breit–Rabi Formula.

Each energy level is labeled with the quantum numbers mI , mj , and
m = mI +mj. The quantum number m remains good throughout, but
mI and mj are good only at large x (high field).

As expected from the factoring of the m = ±2 (stretch) states of the
upper manifold, these lines are linear in x throughout.

(e) Field independent transitions

(i) Field independent transitions occur when the lines are parallel.

Let us find transitions of the form |F = 1,m1〉 → |F = 2,m2〉 that are
field independent.

For small x

ΔE = E(2,m2)−E(1,m1) =
ah

2
(m2 −m1)x− g′IμB(m2 −m1)B◦

Field independence requires

dΔE

dx
= 0
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which happens ifm1 = m2. Therefore an example of a field independent
transition is

|1, 0〉 → |2, 0〉 with selection ruleΔm = 0

At intermediate x,
dΔE

dx
= 0 happens for

|1,−1〉 → |2, 0〉 with selection rule Δm = 1

|1, 0〉 → |2,−1〉 with selection rule Δm = −1

Both these transitions occur when x ≈ 0.27.

These three transitions are shown in the figure as hyperfine transitions.

(ii) At high field, the figure shows that transitions within the same
Zeeman manifold will be field independent, such as transitions |2, 1〉 →
|2, 2〉 or |2, 0〉 → |2, 1〉.
For the first case

E(2, 2)−E(2, 1) = ah
[
(1 + x)−

√
1 + x+ x2

]
−g′IμB

xah

(g′I + gj)μB

Therefore

dΔE

dx
= 0 =⇒ ah

[
1− 1 + 2x

2
√
1 + x+ x2

− 2g′I
(g′I − gj)

]
= 0

which gives

x ≈ 1

4

√
gj
g′I

= 10.8

For the second case

E(2, 1)−E(2, 0) = ah
[√

1 + x+ x2 −√
1 + x

]
−g′IμB

xah

(g′I + gj)μB

Therefore

dΔE

dx
= 0 =⇒

[
1 + 2x

2
√
1 + x+ x2

− 1

2
√
1 + x

− 2g′I
gj + g′I

]
= 0

which gives

x ≈ 1

4

√
3gj
g′I

= 18.5

Examples of such transitions are shown in the figure as Zeeman transi-
tions.
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(iii) For Na in the ground state

gj = 2 and g′I = 2.22
μN

μB
=

2.22

1836
= 1.2× 10−3

and the hyperfine separation is

ΔW = 2ah = 1.77 GHz

The magnetic field for the field independent transition |1, 0〉 → |2,−1〉
is

x ≈ 0.27 =
(gj + g′I)μBB◦

2ah
=⇒ B◦ ≈ 170 G

(iv) In order to find that a transition that is independent of ah, we try
the transition |2,−1〉 → |1,−1〉. The energy separation for this is

ΔE = 2ah
√
1− x+ x2

Independence of ah requires

dΔE

d(ah)
= 0

which implies

2
√
1− x+ x2 + 2ah

d

dx

√
1− x+ x2

dx

d(ah)
= 0

and yields

x− 2 = 0 =⇒ x = 2

Thus the transition |2,−1〉 → |1,−1〉 is independent of ah if we work
in a field that produces x = 2 or B ≈ 1260 G.



Chapter 5

Resonance

T
his chapter is about the interaction of a two-state system with a sinu-
soidally oscillating field (either electric or magnetic), whose oscillation

frequency is nearly resonant with the natural frequency of the system,
i.e. the difference in energies between the two states. The oscillating field
will be treated classically, and the linewidth of both states will be taken
as zero until near the end of the chapter, where relaxation will be treated
phenomenologically. The organization of the material is historical because
this happens to be a logical order of presentation—magnetic resonance of a
classical moment is discussed before taking up a quantized spin; the density
matrix is introduced last and used to treat systems with damping, which is
a useful prelude to the application of resonance ideas at optical frequencies,
and to the many real systems which have damping.

141
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A. Introduction

The cornerstone of contemporary atomic, molecular, and optical physics
(AMO physics) is the study of atomic and molecular systems and their in-
teractions through their resonant interaction with applied oscillating fields.
The thrust of these studies has evolved continuously since Rabi performed
the first resonance experiments in 1938. In the decade following World
War II, the edifice of quantum electrodynamics was constructed largely in
response to resonance measurements of unprecedented accuracy on the prop-
erties of the electron, and the fine and hyperfine structure of simple atoms
like hydrogen. At the same time, nuclear magnetic resonance (NMR) and
electron paramagnetic resonance (EPR) techniques were developed, and
quickly became essential research tools for chemists and solid state physi-
cists. Molecular beam magnetic and electric resonance studies yielded a
wealth of information on the properties of nuclei and molecules, and pro-
vided invaluable data for the nuclear physicist and physical chemist. This
work continues: the elucidation of basic theories such as quantum mechan-
ics, tests of quantum electrodynamics, the development of new techniques,
the application of old techniques to more systems, and the universal move
to ever higher precision. Molecular beam studies, periodically invigorated
by new sources of higher intensity or new species (e.g. clusters) are car-
ried out in numerous laboratories—chemical as well as physical—and new
methods for applying the techniques of NMR are being developed.

Properly practiced, resonance techniques controllably alter the quantum
mechanical state of a system without adding any uncertainty. Thus reso-
nance techniques may be used not only to learn about the structure of a
system, but also to prepare it in a particular way for further use or study.
Because of these two facets, resonance studies have led physicists through a
fundamental change in attitude—from the passive study of atoms to the ac-
tive control of their internal quantum state and their interactions with the
radiation field. This active approach is embodied generally in the study and
creation of coherence phenomena (coherent control), with one particular
example being the field of laser cooling where the external (translational)
degrees of freedom of the atom are controlled.

However, the chief legacy of the early work on resonance spectroscopy is
the family of lasers which have sprung up like the proverbial brooms of
the sorcerer’s apprentice. The scientific applications of these devices have
been prodigious. They have caused the resurrection of physical optics—now
freshly christened quantum optics—and turned it into one of the liveliest
fields in physics. They have had a similar impact on atomic and molec-
ular spectroscopy. In addition, they have led to new families of physical
studies such as single particle spectroscopy, multi-photon excitation, cav-
ity quantum electrodynamics, laser cooling and trapping, Bose–Einstein
condensation, to name but a few of the many developments.
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1. Resonance measurements and QED

One characteristic of atomic resonance is that the results, if you can obtain
them at all, are generally of very high accuracy, so high that the information
is qualitatively different from other types.

The hydrogen fine structure is a good example. In the late 1930s, there was
extensive investigation of the Balmer series of hydrogen

|n > 2 〉 → |n = 2 〉

The Dirac theory was thought to be in good shape, but some doubts were
arising. Careful study of the Balmer-alpha line

|n = 3 〉 → |n = 2 〉

showed that the line shape might not be given accurately by the Dirac
theory. Pasternack (in 1939) studied the spectrum, and suggested that the
2 2S1/2 and the 2 2P1/2 states were not exactly degenerate, but that the
energy of the 2S1/2 state was greater than the Dirac value by ∼1200 MHz.
However, there was no rush to throw out the Dirac theory on such flimsy
evidence.

In 1947, Lamb found a splitting between the 2S1/2 and the 2P1/2 states
using a resonance method. The experiment is one of the classics of physics.
Although his very first observation was relatively crude, it was nevertheless
accurate to one percent. He found

LSH =
1

h

[
E(2S1/2)− E(2P1/2)

]
= 1050(10)MHz

The inadequacy of the Dirac theory was inescapably demonstrated. Today
the Lamb shift is known to an error of less than 10 kHz, a precision of
approximately 10 parts per million.

The magnetic moment of the electron offers another example. As we saw
in Chapter 3, “Atoms,” Uhlenbeck and Goudsmit in 1925 suggested that
the electron has intrinsic spin angular momentum s = 1/2, and a g factor
of 2 exactly as predicted by the Dirac theory. However, experiments by
Kusch showed that the g factor was slightly larger, a fact which could only
be explained by the theory of quantum electrodynamics (QED).

The Lamb shift and the departure of g from 2 resulted in the award of
the 1955 Nobel prize to Lamb and Kusch. The two results provided the
experimental basis for the theory of QED, for which Feynman, Schwinger,
and Tomonaga received the Nobel Prize in 1965.
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2. Experimental precision

In Chapter 2, “Preliminaries,” we discussed the case of a driven damped
harmonic oscillator in the classical regime. Recall that the average power
dissipated near resonance (ω ≈ ω◦) was a universal resonance curve called
a Lorentzian curve, with a linewidth of Δω = Γ.

Noting that the P vs ω curve is the Fourier transform of the P vs t curve,
the decay time and the linewidth obey

τ Δω = 1

This can be regarded as an uncertainty relation.

Assuming that energy and frequency are related by E = �ω, then the
uncertainty in energy is ΔE = �Δω and

τ ΔE = �

It is important to realize that the Uncertainty Principle merely characterizes
the spread of individual measurements. Ultimate precision depends on the
experimenter’s skill; the Uncertainty Principle essentially sets the scale of
difficulty for his or her efforts.

The precision of a resonance measurement is determined by how well one
can split the resonance line. This depends on the signal-to-noise ratio
(SNR). As a rule of thumb, the uncertainty δω in the location of the center
of the line is

δω =
Δω

SNR

In principle, one can make δω arbitrary small by acquiring enough data
to achieve the required statistical accuracy. In practice, systematic er-
rors eventually limit the precision. Splitting a line by a factor of 104 is a
formidable task which has only been achieved a few times, most notably
in the measurement of the Lamb shift. A factor of 103, however, is not
uncommon, and 102 is child’s play.
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B. Magnetic resonance

The two-state system is basic to atomic physics because it approximates
accurately many physical systems, particularly systems involving resonance
phenomena. All two-state systems obey the same dynamical equations;
thus to know one is to know all. The archetype two-state system is a spin
1/2 particle (such as an electron, proton, or neutron) in a magnetic field,
where the spin motion displays the total range of phenomena in a two-state
system.

1. Classical motion of magnetic moment in a static B
field

In a static magnetic field, a magnetic moment that is tipped at an angle
with respect to the field will precess around it. This is just like the motion
of a spinning top which precesses around the direction of gravity (say, along
the z axis), when its axis of rotation is tipped from z, as shown in Fig. 5.1.

Figure 5.1: Precession of a spinning top around the direction of gravity
when its axis of rotation is tipped.

In order to see this for the moment, consider its interaction energy with the
field

U = −�μ · �B
This results in the following force

�F ≡ −∇U = ∇(�μ · �B)

and torque

�N ≡ �r × �F = �μ× �B
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In a uniform field, �F = 0, but the torque causes the angular momentum to
evolve according to the following equation of motion

d�L

dt
= �N = �μ× �B

From Chapter 3, “Atoms,” we know that �μ = γ �L. Therefore, the above
equation becomes

d�L

dt
= γ �L× �B = −γ �B × �L (5.1)

This results in a pure precession of �L about �B when the field is static. To
see this, choose �B to be constant and along the z axis

�B = B◦ ẑ

and �L in a direction given by the usual spherical polar coordinates, i.e. it is
tipped at an angle of θ from the z axis, and rotated at an angle of φ from
the x axis.

With this choice, the torque −γ �B × �L has no r̂ component (because �L is

along r), nor θ̂ component (because the �L�B plane contains θ), and hence

�N = −γ B◦|�L| sin θ φ̂

This implies that �Lmaintains a constant magnitude, and a constant tipping
angle θ. The only thing that evolves with time is the angle φ. Noting that
the φ̂ component of d�L/dt is |�L| sin θ dφ/dt, Eq. (5.1) implies

φ(t) = −γ B◦t

This shows that the moment precesses about �B with a constant angular
velocity

ΩL = γB◦

ΩL is called the Larmor frequency. By convention, ΩL is always taken to
be positive, because its sign only determines the direction of rotation. Thus
the above analysis shows that the moment precesses in the −φ direction.

Note that Planck’s constant does not appear in the equation of motion: the
motion is classical.
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2. Rotating coordinate transformation

A second way to find the motion is to look at the problem in a rotating
coordinate system.

If some vector �A rotates with angular velocity �Ω, then

d �A

dt
= �Ω× �A

The rate of change of the vector in the two systems is related as[
d �A

dt

]
in

=

[
d �A

dt

]
rot

+ �Ω× �A

Thus the operator prescription for transforming a vector from an inertial
to a rotating system is[

d

dt

]
in

=

[
d

dt

]
rot

+ �Ω× (5.2)

Applying this to Eq. (5.1) gives[
d�L

dt

]
rot

= γ�L× �B − �Ω× �L = γ�L× ( �B + �Ω/γ) (5.3)

If we define

�Beff = �B + �Ω/γ

Eq. (5.3) becomes[
d�L

dt

]
rot

= γ�L× �Beff

If �Beff = 0, then �L is constant is the rotating system. The condition for
this is

�Ω = −γ �B =⇒ Ω = −γB◦

as we have found previously.
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3. Larmor’s theorem

Treating the effects of a magnetic field on a magnetic moment by transform-
ing to a rotating coordinate system is closely related to Larmor’s theorem,
which asserts that the effect of a magnetic field on a free charge can be
eliminated by a suitable rotating coordinate transformation.

Consider a particle of mass m and charge q, under the influence of a force
comprising of an applied force �F◦ and the Lorentz force due to a static field
�B

�F = �F◦ +
q

c
�v × �B (5.4)

Now we consider the motion in a rotating coordinate system. By applying
Eq. (5.2) twice to �r, we have

(�̈r)rot = (�̈r)in − 2 �Ω× �vrot − �Ω× (�Ω× �r)

so that the force transforms as

�Frot = �Fin − 2m (�Ω× �vrot)−m�Ω× (�Ω× �r)

where �Frot is the apparent force in the rotating system, and �Fin is the true
or inertial force. Substituting the inertial force from Eq. (5.4) gives

�Frot = �F◦ +
q

c
�v × �B + 2m�v × �Ω−m�Ω× (�Ω× �r)

If we choose �B = B◦ẑ and �Ω = −(qB◦/2mc)ẑ = −γB◦ẑ, we have

�Frot = �F◦ −mΩ2 ẑ × (ẑ × �r)

The last term is usually small. If we drop it, we have

�Frot = �F◦

Thus we see that the effect of the magnetic field is removed by going into
a system rotating at the Larmor frequency of γB◦.

Although Larmor’s theorem is suggestive of the rotating coordinate trans-
formation, it is important to realize that the two transformations apply
to fundamentally different systems. A magnetic moment is not necessar-
ily charged—e.g. a neutral atom can have a net magnetic moment, and
the neutron possesses a magnetic moment in spite of being neutral—and it
experiences no net force in a uniform magnetic field. Furthermore, the ro-
tating coordinate transformation is exact for a magnetic moment, whereas
Larmor’s theorem for the motion of a charged particle is only valid when
the Ω2 term is neglected.
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4. Motion in a rotating B field

We have already seen that the moment precesses because of the torque
�μ× �B, which means that the component parallel to �B is a constant of the
motion. Thus if �B is chosen to be along the z axis, then the ẑ component
of the moment does not change. If we want to change it, then we have to
introduce a field in the xy plane. This is the role of B1 in the following.

(i) On-resonance behavior

Consider a moment �μ precessing about a static field �B◦. We take �B◦ = B◦ ẑ,
so that the moment precesses in the −φ direction with a constant θ. Thus
its components are

μx = μ sin θ cosω◦t

μy = −μ sin θ sinω◦t

μz = μ cos θ

where ω◦ = ΩL = γB◦ is the Larmor frequency.

Suppose we now introduce a rotating magnetic field �B1, which rotates in the
xy plane in the same direction as the moment, and at the Larmor frequency
with no detuning. Then the total magnetic field is

�B(t) = B1(x̂ cosω◦t− ŷ sinω◦t) +B◦ẑ

Figure 5.2: Rotating coordinate transformation to the primed system
that is co-rotating with B1 at ω, with x′ chosen to lie along B1. For the
exact resonance case of ω = ω◦ considered here, the effective field around
which the moment precesses is equal to B1.

The Figure (5.2) above shows that the motion of �μ is simple in a rotating
coordinate system. Define a coordinate system (x′, y′, z′) which co-rotates
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with B1 around the z axis of the (x, y, z) system at a rate ω◦, so that z′ = z.

In the rotating system, the field �B1 is stationary, and if x′ is chosen to lie
along �B1, we have

�Beff(t) = �B(t)− (ω◦/γ) ẑ = B1x̂
′ + (B◦ − ω◦/γ)ẑ = B1x̂

′

Thus, the effective field is static and has the value of B1. The moment
precesses about this field at a rate

ωR = γB1

and in the same direction as for the static field. This equation contains a
lot of history; the RF magnetic resonance community conventionally calls
this frequency ω1, but the laser resonance community calls it the Rabi
frequency ωR in honor of Rabi’s invention of the resonance technique.

If the moment initially lies along the +z axis, then its tip traces a circle in
the yz plane. At time t it has precessed through an angle φ = ωRt. Thus
the ẑ component of the moment is given by

μz(t) = μ cosωRt

At time T = π/ωR, the moment points along the −z axis; it has “turned
over.”

(ii) Off-resonance behavior

Now suppose that the field B1 rotates at a frequency that is detuned from
resonance by δ ≡ ω − ω◦. In a coordinate frame rotating with B1, the
effective field is

�Beff = B1x̂′ + (B◦ − ω/γ)ẑ

The effective field lies at angle θ with the z axis, as shown in Fig. 5.3.
The field is static, and the moment precesses about it at rate (called the
effective Rabi frequency)

ω′
R = γBeff = γ

√
(B◦ − ω/γ)2 +B2

1 =
√
(ω◦ − ω)2 + ω2

R =
√
δ2 + ω2

R

where ω◦ = γB◦ and ωR = γB1, as before.

Assume that �μ points initially along the +z axis. Finding μz(t) is a straight-
forward problem in geometry. The moment precesses about Beff at rate ω′

R,
sweeping a circle as shown in the figure. The radius of the circle is μ sin θ,
where

sin θ =
B1√

(B◦ − ω/γ)2 +B2
1

=
ωR√

(ω − ω◦)2 + ω2
R

=
ωR

ω′
R



Magnetic resonance 151

Figure 5.3: Rotating coordinate transformation to the primed system
that is rotating with B1 at ω, for the off resonant case of ω < ω◦. Hence
the effective field is not along B1 but tipped at an angle θ with respect
to the z axis. The moment makes an angle α with the z axis after it has
precessed through an angle φ = ω′

Rt.

In time t the tip sweeps through angle φ = ω′
Rt. The ẑ component of the

moment is μ cosα, where α is the angle between the moment and the z axis
after it has precessed through angle φ. As the figure shows, cosα is found
by solving

A2 = 2μ2(1− cosα)

Since A = 2μ sin θ sin(ω′
Rt/2), we have

μz(t) = μ cosα

= μ

[
1− 2 sin2 θ sin2

(
ω′
Rt

2

)]

= μ

[
1− 2

ω2
R

ω′2
R

sin2
(
ω′
Rt

2

)] (5.5)

The ẑ component of �μ oscillates in time, but unless ω = ω◦, the moment
never completely inverts. The rate of oscillation depends on the magnitude
of the rotating field and the detuning; the amplitude of oscillation depends
on the detuning relative to ωR. The quantum mechanical result is identical.
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5. Adiabatic rapid passage and the Landau–Zener
crossing

Adiabatic rapid passage is a technique for inverting a spin population by
sweeping the system through resonance. Usually, the frequency of the os-
cillating field is varied with time. The principle is qualitatively simple in
the rotating coordinate system. The problem can also be solved analyti-
cally. In this section we give the qualitative argument and then present the
analytic quantum result. The solution is of quite general interest because
this physical situation arises frequently, for example in inelastic scattering
where it is called a curve crossing.

Figure 5.4: Change in direction of effective field around which the moment
precesses as the frequency is swept through resonance. (a) Beff is nearly
parallel to B◦ when ω � γB◦. (b) Beff = B1 on resonance when ω = γB◦.
(c) Beff is almost in the −z direction when ω � γB◦.

Consider a moment �μ in the presence of a static magnetic field �B◦ and
a perpendicular rotating field �B1 at some frequency ω, as shown in Fig.
5.4. Initially, let the frequency of the rotating field be far below resonance
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ω � γB◦. In the frame rotating with �B1 the magnetic moment “sees” an
effective field �Beff whose direction is nearly parallel to �B◦. A magnetic
moment �μ initially parallel to �B◦ will precess around �Beff , making only a
small angle with �Beff , as shown in Fig. 5.4(a).

If ω is swept slowly through resonance, �μ will continue to precess tightly
around �Beff , as shown in Fig. 5.4(b) and (c), and follow its direction adia-
batically. In Fig. 5.4(c), the effective field now points in the −z direction,

because ω 	 γB◦. Since the spin still precesses tightly around �Beff , its
direction in the laboratory system has “flipped” from +z to −z. The labo-
ratory field �B◦ remains unchanged, so this represents a transition from spin
up to spin down.

The requirement for �μ to follow the effective field �Beff(t) is that the Larmor
frequency ΩL = γBeff be large compared to θ̇, the rate at which Beff(t) is
changing direction. This requirement is most severe near exact resonance
where θ = π/2. Using Beff(t) = B◦ − ω/γ, we have in this case (from
geometry)

|θ̇max| = 1

B1

dBeff(t)

dt
=

1

γB1

dω

dt
	 γB1

Or, using ωR = γB1,

dω

dt
� ω2

R (5.6)

In this example we have shown that a slow change from ω � γB◦ to
ω 	 γB◦ will flip the spin; the same argument shows that the reverse
direction of slow change will also flip the spin.

For a two-state system the problem can be solved rigorously. Consider a
spin 1/2 system in a magnetic field �Beff with energies∗

E± = ±1

2
�γBeff = ±1

2
�ω′

R

where we have chosen the zero of the energy to be the mean energy of the
two states. The two energy levels are sketched in Fig. 5.5.

In the absence of the rotating field B1, the effective field in the rotating
frame is B◦ − ω/γ, and

E◦
± = ±1

2
�(ω − ω◦)

where ω◦ = γB◦. As ω is swept through resonance, the two states move
along the energies shown as dashed lines in the figure. The energies change,

∗This is the same as the eigenvalues of H2 in the dressed atom picture dealt with in
Chapter 3, “Atoms.”
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Figure 5.5: Avoided crossing of energy levels in a two-state system due
to coupling. Intersecting dashed lines in the absence of coupling become
non-intersecting hyperbolas in the presence of coupling.

but the states do not. There is no coupling between the states, so a spin
initially in one or the other will remain so indefinitely.

In the presence of a rotating field B1, however, the (dressed) energy levels
look quite different. Instead of intersecting lines they form non-intersecting
hyperbolas separated by energy �ω′

R (or a minimum of �ωR on resonance),
shown as solid lines in the figure. If the system moves along these hyperbo-
las, then |↑〉 → |↓〉 and |↓〉 → |↑〉.

(i) Quantum treatment

Whether or not the system follows an energy level adiabatically depends
on how rapidly the energy is changed, compared to the minimum energy
separation. To cast the problem in quantum mechanical terms, imagine
two non-interacting states whose energy separation �ω depends on some
parameter x which varies linearly in time, and vanishes for some value x◦.
Now add a perturbation having an off-diagonal matrix element V which is
independent of x, so that the energies at x◦ are ±V (corresponding to the
point δ = 0 in the figure). The probability that the system will “jump”
from one state to the other after passing through the “avoided crossing”
(i.e. the probability of non-adiabatic behavior) is

Pna = exp (−2πΓ) with Γ =
|V |2
�2

[
dω

dt

]−1
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This result was originally obtained by Landau and Zener. The jumping of
a system as it travels across an avoided crossing is called the Landau–Zener
effect.

Inserting the parameters for our magnetic field problem, we have

Pna = exp

[
−π

2

ω2
R

dω/dT

]
Note that the negative factor in the exponential is related to the inequality
in Eq. (5.6). When that equation is satisfied, the exponent is large and the
probability of non-adiabatic behavior is exponentially small.

Incidentally, the term “rapid” in adiabatic rapid passage is something of a
misnomer. The technique was originally developed in NMR in which ther-
mal relaxation effects destroy the spin polarization if one does not invert
the population sufficiently rapidly. In the absence of such relaxation pro-
cesses, one can take as long as one pleases to traverse the anti-crossing; in
fact, the slower the rate the less the probability of jumping.
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C. Magnetic resonance of quantized spin 1/2

1. Pauli spin matrices

A spin 1/2 system in quantum mechanics is represented by the angular mo-

mentum operator �S with components Sx, Sy, and Sz. They are commonly
written in terms of the Pauli spin matrices, which are the same except that
they are multiplied by 2/� to make them dimensionless

�σ =
2

�

�S

To find the matrices, we choose the standard basis with eigenstates |s,m〉
that are simultaneous eigenstates of S2 and Sz

S2 |s,m〉 = s(s+ 1)�2 |s,m〉
Sz |s,m〉 = m� |s,m〉

with eigenvalues s = 1/2 and m = ±1/2.

The eigenstates are usually written as column vectors, and identified as
follows

|1〉 ≡ |1/2,+1/2〉 =
[

1
0

]
|2〉 ≡ |1/2,−1/2〉 =

[
0
1

]
(5.7)

In this basis, the mm′ element of the matrix representing Si is

Si,mm′ = 〈1/2,m|Si|1/2,m′〉
It is clear that Sz is diagonal because the basis vectors are eigenstates of
Sz ; and its matrix elements are

Sz,mm′ = m� δm,m′

where δ is the Kronecker delta function.

Finding the representations of Sx and Sy is a bit more involved, and is best
done using standard raising and lowering operators defined for quantizing
angular momentum

S+ = Sx + iSy and S− = Sx − iSy

The action of these operators on the eigenstates is

S± |s,m〉 = �

√
s(s+ 1)−m(m± 1) |s,m± 1〉

Thus their matrix elements are

S±,mm′ = � δm,m′±1
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Using

Sx =
S+ + S−

2
and Sy =

S+ − S−
2i

one gets the components of the spin operator as

Sx =
�

2

[
0 1
1 0

]
Sy =

�

2

[
0 −i
i 0

]
Sz =

�

2

[
1 0
0 −1

]
Thus the three Pauli spin matrices are

σx =

[
0 1
1 0

]
σy =

[
0 −i
i 0

]
σz =

[
1 0
0 −1

]
(5.8)

A bit of algebra shows that the components obey the usual commutation
relations for any angular momentum operator

[Sx, Sy] = i�Sz [Sy, Sz] = i�Sx [Sz, Sx] = i�Sy (5.9)

which is a shorthand way of writing [Si, Sj ] = εijk i�Sk, where εijk is the
totally antisymmetric tensor.

Similarly, the Pauli matrices obey the commutation relations

[σx, σy ] = 2i σz [σy, σz ] = 2i σx [σz , σx] = 2i σy (5.10)

Furthermore, they satisfy σi
2 = 1 and are Hermitian (remember they rep-

resent observables). This means that all three have real eigenvalues equal
to ±1.

2. Expectation value of quantized moment

Before solving the quantum mechanical problem of a magnetic moment
in a time varying field, it is worthwhile demonstrating that its motion is
classical. By “its motion is classical” we mean that the time evolution of
the expectation value of the magnetic moment operator obeys the classical
equation of motion. Specifically, we shall show that

d

dt
〈�μop〉 = γ 〈�μop〉 × �B (5.11)

Proof: Recall that the time evolution of the expectation value of any
quantum operator O obeys the equation of motion

d

dt
〈O〉 = i

�
〈[H,O]〉+ 〈∂O

∂t
〉 (5.12)

If the operator is not explicitly time dependent the last term vanishes.
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The interaction Hamiltonian of the magnetic moment with a magnetic field
is

H = −�μop · �B

From Chapter 3, “Atoms,” we know that �μop = γ �J , where γ is the gyro-

magnetic ratio and �J is the quantum angular momentum operator. If we
choose the quantizing field to be static and along z, i.e. �B = B◦ ẑ, then the
interaction Hamiltonian becomes

H = −γ �J · �B = −γJzB◦

Substituting into the equation of motion in Eq. (5.12), we get

d

dt
〈 �J〉 = − i

�
γB◦ 〈[Jz , �J ]〉

The commutation relations for �J [as we have seen in (5.9)] are

[Jx, Jy] = i� Jz [Jy, Jz] = i� Jx [Jz , Jx] = i� Jy

This implies that

〈J̇x〉 = γB◦ 〈Jy〉 〈J̇y〉 = −γB◦ 〈Jx〉 〈J̇z〉 = 0

which describes a uniform precession of 〈 �J〉 about the z axis at a rate −γB◦.
Thus

d

dt
〈 �J〉 = γ 〈 �J〉 × �B

and since �μop = γ �J , this directly yields Eq. (5.11)

d

dt
〈�μop〉 = γ 〈�μop〉 × �B

Thus the quantum mechanical and classical equation of motion are identical.
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3. The Rabi transition probability

For a spin 1/2 particle in a magnetic field, we can push the classical solution
further and obtain the amplitude and probabilities for each state. Consider

〈μz〉
�

= γ 〈Jz〉 = γ 〈m〉

where m is the usual “magnetic” quantum number.

For a spin 1/2 particle m has the value +1/2 or −1/2. Let the probabilities
for having these values be P+ and P−, respectively, with P+ + P− = 1.
Then

〈m〉 = 1

2
P+ − 1

2
P− =

1

2
(1 − 2P−)

which implies that

〈μz〉 = 1

2
γ� (1− 2P−)

If �μ lies along the z axis at t = 0, then μz(0) = γ�/2, and we have

μz(t) = μz(0)(1− 2P−)

In this case, P− is the probability that has a spin in state m = +1/2 at
t = 0 has made a transition to m = −1/2 at time t, denoted by P↑→↓(t).
Comparing with Eq. (5.5) we see

P↑→↓(t) =
ω2
R

ω2
R + (ω − ω◦)2

sin2
(
1

2

√
ω2
R + (ω − ω◦)2 t

)

=
ω2
R

ω′2
R

sin2
(
ω′
Rt

2

)
This result is known as the Rabi transition probability. It is important
enough to memorize. We have derived it from a classical correspondence
argument, but it can also be derived quantum mechanically. In fact, such
a treatment (as done in the next section) is essential for a complete under-
standing of the system.
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4. Wavefunctions for quantized spin 1/2

Now we investigate the time dependence of the wavefunctions for a quan-
tized spin 1/2 system with moment �μ = γ�S placed in the time varying field
discussed earlier

�B(t) = B1(x̂ cosωt− ŷ sinωt) +B◦ẑ

i.e. a static field �B◦ along z, and a time dependent field �B1(t) which rotates
in the xy plane with frequency ω starting at t = 0. Because we are now
dealing with a quantum system, we must use Schrödinger’s equation rather
than the laws of classical Electricity and Magnetism to discuss the dynamics
of the system.

If we choose the |1〉 and |2〉 basis defined in (5.7), then

|ψ〉 = a1 |1〉+ a2 |2〉 (5.13)

Using ω◦ = γB◦, the unperturbed Hamiltonian is

H◦ = −�μ · �B◦

= −γ�S · �B◦
= −γ(ω◦/γ)Sz

= −�ω◦
2

[
1 0
0 −1

]
where in the last step we have used the Pauli spin matrix σz from (5.8).

The eigenenergies are

E1 = −�ω◦/2

E2 = +�ω◦/2

which shows that state |1〉 has the lower energy, and ω21 = ω◦.

The perturbation Hamiltonian is

H ′(t) = −�μ · �B1(t) = −γ�S · �B1(t)

We choose ωR = −γB1, so that ωR contains both the magnitude and sense
of precession. (The sense of precession around B◦ is already accounted for

in the direction of rotation of �B1.) Then, the perturbation Hamiltonian
becomes

H ′(t) = −γ(−ωR/γ) (Sx cosωt− Sy sinωt)

=
�ωR

2

([
0 1
1 0

]
cosωt−

[
0 −i
i 0

]
sinωt

)

=
�ωR

2

[
0 e+iωt

e−iωt 0

]



Magnetic resonance of quantized spin 1/2 161

using the Pauli spin matrices σx and σy .

Thus the total Hamiltonian is

H = H◦ +H ′

=
�

2

[ −ω21 ωRe
+iωt

ωRe
−iωt ω21

] (5.14)

This Hamiltonian is identical to the one which was used in the dressed-atom
picture in Chapter 3, “Atoms.” Therefore, the general time dependent
solution is what was derived earlier; all we have to do is find aw and as
from the initial conditions, which are a1 = 1 and a2 = 0 at t = 0. Thus we
get

aw = cos θ and as = sin θ

and the wavefunction becomes

|ψ(t)〉 =
(
cos2 θ e−iE+

1
t/� + sin2 θ e−iE−

1
t/�

)
|1〉

+ cos θ sin θ
(
e−iE+

2
t/� − e−iE−

2
t/�

)
|2〉

= e−i(ω1−δ/2)t

(
cos

ω′
Rt

2
− i

δ

ω′
R

sin
ω′
Rt

2

)
|1〉

− ie−i(ω2+δ/2)t

(
ωR

ω′
R

sin
ω′
Rt

2

)
|2〉

Thus the probability of transition from state |1〉 to state |2〉 is |a2|2 or

P1→2(t) =
ω2
R

ω′2
R

sin2
(
ω′
Rt

2

)
which is exactly the same result as we obtained classically for P↑→↓(t).
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5. Separated oscillatory fields — SOF

The separated oscillatory fields (SOF) technique is one of the most powerful
methods of precision spectroscopy. As the name suggests, it involves the
sequential application of the transition-producing fields to the system under
study with an interval in between. This technique was originally conceived
by Norman Ramsey in 1949 for application in RF studies of molecular
beams using two separated resonance coils through which the molecular
beams passed sequentially.∗ It represents the first deliberate exploitation
of a quantum superposition state. Subsequently it has been extended to
high frequencies where the RF regions were in the optical regime, to two-
photon transitions, to rapidly decaying systems, and to experiments where
the two regions were temporally (rather than spatially) separated. It is
routinely used to push measurements to the highest possible precision (e.g.
in the Cs beam time standard apparatus). Ramsey won the 1990 Nobel
Prize for inventing this method.

The SOF technique is based on an interference between the excitations
produced at two separated fields—thus it is sensitive to the phase difference
(coherence) of the oscillating fields. The method is most easily understood
by consideration of the classical spin undergoing magnetic resonance in
the two RF regions. The parameters of the system which influence the
transition probability are

• ω, ω◦, δ, ωR, ω
′
R as defined previously

• θ = sin−1 ωR/ω
′
R = cos−1 δ/ω′

R

• τ = length of time in each resonance region

• T = length of time with no oscillating field

To maximize the interference between the two oscillating fields, we want
there to be a probability of 1/2 for a transition in each resonance re-
gion. This is achieved by adjusting both field intensities (ωR above) so
that ωR τ = π/2—an interaction with this property is termed a “π/2 pulse”
if the system is at resonance, in which case the spin’s orientation is now
along the y axis in the rotating coordinate system [quantum mechanically

∗Ramsey came up with this idea when explaining to students that the resolution of a
lens in an optical telescope can be improved by blackening the central portion of the
lens. This is because the lens forms an image by taking a spatial Fourier transform of
the object—blackening the central portion is equivalent to removing the low-frequency
components from the center while keeping the high-frequency components near the edge,
which are the ones contributing to the resolution. In the SOF method, the blackening of
the lens corresponds to having a dark region between the two OF regions. Of course, this
blackening means a loss of signal—this kind of trade-off between signal and resolution
is a common feature of all precision measurements.
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this equalizes the magnitudes of the coefficients a1 and a2 in Eq. (5.13) in
the two-state system].

During the field-free time T , the spin precesses merrily about B◦. When
it encounters the second OF, it receives a second interaction equal to the
first. If the system is exactly on resonance, this second OF interaction
will just complete the inversion of the spin. If, on the other hand, the
system is off resonance just enough so that δ T = π then the spin will have
precessed about the z axis an angle π less far than the oscillating field. It
will consequently lie in the −y′ direction rather than in the +y′ direction
in the coordinate system rotating with the second OF, and as a result the
second OF will precess the spin back to +z, its original direction, and the
probability of transition will be 0! A little more thought shows that the
transition probability will oscillate sinusoidally with period Δω = 2π/T .
The central maximum of this interference pattern (in ω space) is centered
at ω◦ and its full width at half maximum is π/T . The central maximum
can be made arbitrarily sharp simply by increasing T . In fact, SOF can
be used in this fashion to produce linewidths for decaying particles which
are narrower than the reciprocal of the natural linewidth! (This does not
violate the uncertainty principle because SOF is a way of selecting only
those few particles which have lived for time T longer than the average
decay time; of course there will be fewer atoms of this kind, so one pays in
signal strength for what one gains in sensitivity, which as explained in the
previous footnote is a common trade-off in precision measurements.)

Results for transition amplitudes and probabilities for SOF can be derived
as follows. For initial conditions of a1(0) = 1 and a2(0) = 0, at the final
time of Tf = 2τ + T at the end of the second OF region we get

a2(Tf ) = 2i sin θ

[
cos θ sin2

(
ω′
Rτ

2

)
sin

(
δT

2

)
− 1

2
sin(ω′

Rτ) cos

(
δT

2

)]
× exp [−iωTf/2]

The probability of transition to state |2〉 is |a2(Tf )|2, and is therefore

P1→2 = 4 sin2 θ sin2
(
ω′
Rτ

2

)
×

[
cos

(
δT

2

)
cos

(
ω′
Rτ

2

)
− cos θ sin

(
δT

2

)
sin

(
ω′
Rτ

2

)]2
The first term in this expression is just four times the probability of tran-
sition for a spin passing through one of the OFs. All interference terms
(which must involve T ) are contained in the second term, which also pre-
vents P1→2 from exceeding 1. The quantity δ T is the phase difference
accumulated by the spin in the OF-free region relative to the phase in the
first OF region. If the phase in the second OF region differs from the phase
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in the first OF, the above results must be modified by adding the difference
to δ T .

As mentioned previously, the best SOF interference pattern is obtained
when ωRτ = π/2, in which case the resonance values are θ = π/2, sinω′

Rτ/2 =
cosω′

Rτ/2 = 1/
√
2, and P1→2 = 1.

In Fig. 5.6 we compare the resonance patterns obtained with the SOF tech-
nique (Ramsey method) and the single field technique (Rabi method). Note
that to achieve P1→2 = 1 at resonance requires ωRTs = π in a single OF
measurement (where Ts is the total time for the measurement), whereas
ωRτ = π/2 in a SOF measurement. If we choose T = nτ for the SOF
measurement, then the total time for the measurement is Tf = (n + 2)τ .
Thus a fair comparison would be to set the total measurement times to be
equal, i.e. Tf = (n + 2)τ = Ts. The curves are shown as a function of the
dimensionless detuning parameter x = δ/ωR. In terms of x, the two curves
(with appropriately chosen ωR) are

P1OF =
1

1 + x2
sin2

(π
2

√
1 + x2

)
PSOF = 4

1

1 + x2
sin2

(π
4

√
1 + x2

)
×

[
cos

(π
4
nx

)
cos

(π
4

√
1 + x2

)
− x√

1 + x2
sin

(π
4
nx

)
sin

(π
4

√
1 + x2

)]2
As expected, the two expressions become the same when n = 0 (which
means T = 0).

Figure 5.6: (a) Transition probability for single and separated oscillatory
fields as a function of the detuning parameter x = δ/ωR. To get proba-
bility of 1 on resonance, ωRTs = π for 1OF, while ωRτ = π/2 for SOF.
SOF curve shown for n = 1. (b) SOF curves as in (a) for n = 1 and 5.

In Fig. 5.6(a) we compare the 1OF pattern with SOF pattern for n = 1.
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Even for this simple case

Γ1OF = 1.59 π/Ts

ΓSOF = 0.65 π/Ts

showing that the SOF method gives significantly narrower linewidth. In
Fig. 5.6(b), we show the SOF resonance patterns for n = 1 and n = 5,
which shows that the number of fringes increases with n but there is an
overall envelope that remains the same.

The SOF method offers the following other advantages over the single OF
method besides narrow linewidth.

(i) Perturbations in the resonance frequency ω◦ which occur in the OF-
free region (as long as they average to zero) do not decrease P1→2 as
they would if they occurred while the OF were on.

(ii) Power broadening and shifts (especially in multi-photon processes)
can be reduced by making τ � T .

(iii) Long-lived particles can be selectively studied, allowing one to poten-
tially go below the natural linewidth.

(iv) Precision measurements can be made with short pulsed sources.

(v) There is no restriction to do the measurement in a beam—the two OF
pulses need to be separated only in time, so the measuerement can be
done with a localized cloud of atoms.

An experiment in 1975 showing the power of SOF techniques resulted in
the first real improvement in the Lamb shift in H beyond Lamb’s original
measurement.
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D. Resonance in a two-state system

In the previous section, we considered resonance of a spin 1/2 particle in a
magnetic field—a strong static field that sets the quantization axis, and a
perpendicular rotating field that induces transitions. We will now see that
this situation is identical to the resonance of a general two-state system |1〉
and |2〉 coupled with an oscillating field—either electric or magnetic—but
only when the rotating wave approximation is made. States coupled by
an electric field have transitions that are called electric dipole allowed,
while those coupled by a magnetic field have transitions that are called
magnetic dipole allowed. We will discuss them in more detail, particularly
the selection rules for these transitions, in Chapter 6, “Interaction.”

1. Rotating wave approximation

We first consider states that are coupled by an oscillating electric field. Let
us take the field to be linearly polarized along the z axis, so that it has the
form

�E = E cosωt ẑ =
1

2
E [

eiωt + e−iωt
]
ẑ

If we define the Rabi frequency as

ωR ≡ 1

�
〈2|eEz|1〉 (5.15)

then the off-diagonal perturbation matrix element (due to the H ′ = −�d · �E
interaction) is

〈2|H ′|1〉 = �ωR

2

[
eiωt + e−iωt

]
Thus if |ψ(t)〉 is written (in the interaction representation) as

|ψ(t)〉 = a1(t)e
−iω21t |1〉+ a2(t)e

iω21t |2〉
then substitution in Schrödinger’s equation leads to the following coupled
equations for a1 and a2

ȧ1 = − iωR

2

[
e+i(ω−ω21)t + e−i(ω+ω21)t

]
a2

ȧ2 = − iωR

2

[
e−i(ω−ω21)t + e+i(ω+ω21)t

]
a1

We now make what is called the rotating wave approximation, which
amounts to ignoring the counter-rotating (ω + ω21) term. Then we get

ȧ1 = − iωR

2
e+iδta2

ȧ2 = − iωR

2
e−iδta1
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These are the same equations as Eqs. (3.24) in Chapter 3 used in the dressed-
atom picture. The comparison becomes easier if we write the equations in
Hamiltonian form

H =
�

2

[ −ω21 ωRe
+iωt

ωRe
−iωt ω21

]
which is also the same as the Hamiltonian for magnetic resonance of spin
1/2 that we saw in Eq. (5.14).

The analysis for an oscillating magnetic field is similar except that the
interaction is due to H ′ = −�μ · �B. The only condition is that the oscillating
field be orthogonal to the quantization axis. If the quantization axis is set
by the direction of propagation of light and the transition is coupled by
the same radiation, then the condition is automatically satisfied because
all fields are transverse in the radiation zone. In fact, the SOF technique,
mentioned previously, is used to make precise measurements of the clock
transition in Cs, which is a magnetic dipole transition between the two
hyperfine levels of the ground state where an oscillating magnetic field is
used to drive the transition.

Thus the resonance conditions are the same for a quantized spin 1/2 in a
rotating magnetic field, or of a two-state system coupled by an oscillating
field after making the rotating wave approximation.

2. Isomorphism with spin 1/2 in a magnetic field

The preceding discussion of the magnetic resonance of a quantized spin
1/2 system also made direct contact with classical resonance of a magnetic
moment because the transition probability for the two was the same. This
is a reflection of a deeper isomorphism which was first proved by Feynman,
Vernon, and Hellwarth—that it is possible to map the dynamical behavior
of any two-state quantum mechanical system onto the dynamical behavior
of a spin 1/2 particle in the properly associated time-varying magnetic
field.∗ The above similarities are but a special case of this relationship,
which we will see more of in the next section on the density matrix. The
importance of this isomorphism is that our intuition for the behavior of a
spin 1/2 in a time-varying magnetic field can now be directly applied to
any quantized two-state system.

∗R. P. Feynman, F. L. Vernon, Jr, and R. W. Hellwarth, “Geometrical representation
of the Schrödinger equation for solving maser problems,” J. Appl. Phys. 28, 49–52
(1957).
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E. Density matrix

Probabilities enter quantum systems in two ways.

(i) The familiar |cn|2 ≡ | 〈ψn|ψ〉 |2, arising because there is a finite prob-
ability amplitude cn for the wavefunction |ψ〉 to be in the eigenstate
|ψn〉.

(ii) A statistical probability arising because the systems have a probability
distribution, e.g. a thermal distribution of spin components for atoms
coming out of an oven.

If only (i) is present, the system is said to be in a pure quantum state,
while a system with (ii) also is said to be a statistical mixture. The usual
time dependent expansion

|ψ(t)〉 =
∑
n

cn(t) |ψn〉 (5.16)

plus Schrödinger equation is not well suited for dealing with systems where
both are present. On the other hand, the density matrix approach is
advantageous in such a situation because it treats both on an equal footing.

1. General results

The density matrix operator is defined as

ρ(t) ≡ |ψ(t)〉 〈ψ(t)| (5.17)

and its matrix elements are

ρnm(t) ≡ 〈ψn| ρ(t) |ψm〉 = c∗m(t)cn(t)

The bar here indicates an ensemble average over identically (but not nec-
essarily completely) prepared systems. An ensemble average is essential to
treat statistical probabilities (e.g. only the ensemble average of spin projec-
tions of atoms from an oven is zero), and an ensemble average is always
implicit in using a density matrix (but for notational simplicity it will be
eliminated from here on).

The diagonal elements of the matrix are of the form c∗ncn and represent
the population (or probability) in the state |ψn〉; whereas the off-diagonal
elements are of the form c∗mcn and represent the coherence (or relative
phase) between the amplitudes for being in states |ψm〉 and |ψn〉. Thus the
density matrix provides a convenient test for a properly normalized system,
i.e. sum of all probabilities should be equal to unity, which implies

Tr{ρ} = 1
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where Tr is the trace—the sum of the diagonal elements. It also provides a
test for a pure quantum state because

Tr{ρ2} ≤ Tr{ρ}

and only the equality implies a pure state.

The density matrix provides a way to find the expectation value of operators
which do not commute with the Hamiltonian. For an operator A, the
expectation value at time t is

〈A〉t ≡ 〈ψ(t)|A |ψ(t)〉 =
∑
m,n

c∗m(t)cn(t)Anm

which can be evaluated easily as

〈A〉t =
∑
m,n

ρmn(t)Anm = Tr{ρ(t)A}

As mentioned before, the above expression really involves two sums—the
ensemble average in the preparation of the systems, and the usual quantum
mechanical sum over the basis to find the expectation value.

The time evolution of the density matrix is determined by a first order
differential equation which is obtained by applying Schrödinger’s equation
to the time derivative of Eq. (5.17)

i� ρ̇ = Hρ− ρH ≡ [H, ρ]

This reflects changes in ρ due solely to interactions included in the Hamilto-
nian—additional terms may be added to account for incoherent processes
such as damping, addition or subtraction of atoms from the system, or in-
teractions with other quantized systems not accessible to measurement (e.g.
collisions).

We should always keep in mind that ρ is to be used on a statistical ensemble
of systems similarly prepared. If this preparation is sufficient to force the
system into a pure state [so that Eq. (5.16) holds for each member of the
ensemble], then the ensemble average is superfluous; if the preparation is
insufficient, then there will be random phases between some of the cn’s in
Eq. (5.16).
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2. Density matrix for a two-state system

The density matrix for a two-state system is

ρ =

[
ρ11 ρ12
ρ21 ρ22

]
with ρ12 = ρ∗21

We shall consider a two-state system in which E1 = �ω◦/2 and E2 =
−�ω◦/2. Thus the unperturbed Hamiltonian is

H◦ =
�

2

[
ω◦ 0
0 −ω◦

]
=

�ω◦
2

σz

We now subject the system to an off-diagonal perturbation of arbitrary
strength and time dependence: 〈1|H ′|2〉 = (V1 − iV2)/2, so that the pertur-
bation Hamiltonian is

H ′ =
1

2

[
0 V1 − iV2

V1 + iV2 0

]
=

V1

2
σx +

V2

2
σy

Thus the total Hamiltonian is

H =
1

2

[
�ω◦ V1 − iV2

V1 + iV2 −�ω◦

]
=

1

2
[V1 σx + V2 σy + �ω◦ σz ] (5.18)

This is a general enough system to encompass most two-state systems which
are encountered in resonance physics.

Before solving for ρ we shall change variables in the density matrix

ρ =
1

2

[
r◦ + r3 r1 − ir2
r1 + ir2 r◦ − r3

]
=

1

2
[r◦1+ r1 σx + r2 σy + r3 σz] (5.19)

There is no loss of generality in this substitution—it has four independent
quantities just as ρ does—but it makes the physical constraints on ρ mani-
fest

Tr{ρ} = r◦ = 1 and ρ12 = ρ∗21

We can now solve the equation of motion for ρ(t)

ρ̇ =
1

i�
[H, ρ]

Since we have expressed both H and ρ in terms of the Pauli spin matrices,
we can use the commutation relations from (5.10), and then equate the
coefficients of each σ to get the following

σx : ṙ1 =
1

�
V2r3 − ω◦r2

σy : ṙ2 = ω◦r1 − 1

�
V1r3

σz : ṙ3 =
1

�
V1r2 − 1

�
V2r1

(5.20)
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These results can be summarized by using the following vector representa-
tion∗

�ω =
1

�
V1 x̂+

1

�
V2 ŷ + ω◦ ẑ and �r = r1 x̂+ r2 ŷ + r3 ẑ

so that Eq. (5.20) becomes

�̇r = �ω × �r (5.21)

The above equation proves that the time evolution of the density matrix
for our very general two-state system is isomorphic to the behavior of a
classical magnetic moment in a magnetic field which points along �ω. Our
previous discussion showing that the quantum mechanical spin obeyed this
equation also is therefore superfluous for a spin 1/2 system.

One consequence of Eq. (5.21) is that �̇r is always perpendicular to �r, so
that |�r| does not change with time. This implies that if ρ is initially a pure
state, ρ remains forever in a pure state no matter how violently �ω is gyrated.
This is because from Eq. (5.19) and using σ2

i = 1, we have

Tr{ρ2} = r2◦ + r21 + r22 + r23 = r2◦ + |�r|2

which does not change with time if |�r|2 does not change.

In general it is not possible to decrease the purity (coherence) of a system
with a Hamiltonian like the one in Eq. (5.18). Since real coherences do in
fact die out, we shall have to add relaxation processes to our description in
order to approach reality. The density matrix formulation makes this easy
to do, and this development will be done in the next section.

3. Phenomenological treatment of relaxation — Bloch
equations

Statistical mechanics tells us the form that the density matrix will finally
take, but it does not tell us how the system will get there or how long it will
take. All we know is that ultimately we will reach a thermal equilibrium
ρT at temperature T , given by

ρT =
1

Z
e−H◦/kT

where Z is the partition function.

Since the interactions that ultimately bring thermal equilibrium are inco-
herent processes, the density matrix formulation seems like a natural way to
treat them. Unfortunately in most cases these interactions are sufficiently

∗Due to Feynman, Vernon, and Hellwarth. See footnote on p. 167 for the full reference.
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complex that this is done phenomenologically. For example, the equation
of motion for the density matrix might be modified by the addition of a
damping term

ρ̇ =
1

i�
[H, ρ]− (ρ− ρT )/Te

which would (in the absence of a source of non-equilibrium interactions)
drive the system to equilibrium with time constant Te.

This equation is not sufficiently general to describe the behavior of most
systems studied in resonance physics. The reason is that most systems
exhibit different decay times for the populations and the phase coherences,
called T1 and T2 respectively.

T1 — decay time for population differences between non-degenerate states,
e.g. for r3 used in Eq. (5.19). This is also called the energy decay
time.

T2 — decay time for coherences between either degenerate or non-degenerate
states, e.g. for r1 or r2.

In general it requires a weaker interaction to destroy coherence than to
destroy the population difference, so T2 < T1.

The effects of thermal relaxation with the two decay times described above
are easily incorporated into the vector model for the two-state system, since
rz represents the population differences, while rx and ry represent coher-
ences. The results are

�̇rx =
1

�
(�ω × �r)x − (rx − rxT )/T2

�̇ry =
1

�
(�ω × �r)y − (ry − ryT )/T2

�̇rz =
1

�
(�ω × �r)z − (rz − rzT )/T1

For a magnetic spin system �r corresponds directly to the magnetic moment
�μ. The above equations were first introduced by Bloch in this context and
are therefore known as the Bloch equations.

The addition of phenomenological decay times does not generalize the den-
sity matrix enough to cover situations where atoms (possibly state-selected)
are added or lost to a system. This situation can be covered by the addi-
tion of further terms to ρ̇. Thus a calculation on a resonance experiment
in which state-selected atoms are added to a two-state system through a
tube which also permits atoms to leave (e.g. a hydrogen maser) might look
like (while noting that the off-diagonal coherence terms decay to 0 at equi-
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librium)

ρ̇ =
1

i�
[ρ,H ]−

[
(ρ11 − ρ11T )/T1 ρ12/T2

ρ21/T2 (ρ22 − ρ22T )/T1

]
+R

[
0 0
0 1

]
− ρ/Tesc − ρ/Tcol

where

• The first term represents interaction with static and oscillating fields.

• The second term is Bloch relaxation.

• R is the rate of addition of state-selected atoms.

• The last two terms express losses due to atoms escaping from the
system and due to collisions (e.g. spin exchange) that cannot be in-
corporated in T1 and T2.

The terms representing addition or loss of atoms will not have zero trace,
and consequently will not maintain Tr{ρ} = 1. Physically this is reasonable
for systems that gain or lose atoms; the application of the density matrix
to this case shows its power to deal with complicated situations. In most
applications of the above equation, one looks for a steady-state solution
with ρ̇ = 0, so this does not cause problems.
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F. Resonance of a realistic two-state system

In this section we apply density matrix techniques to a physically realistic
two-state “atom,” with states labeled |a〉 and |b〉 respectively. The popu-
lations in the two states decay at a rate Γ1 = 1/T1, while the coherence
between them decays at a rate Γ2 = 1/T2. They are coupled by an oscil-
lating field. With all the decay terms, we must also have a source term;
we presume that atoms are added to the lower state |a〉 at a rate Γ1n◦,
so there will be n◦ atoms in the system on average. We shall study the
resonance behavior of this system by finding the steady-state solution for
the population of the upper state. In a dilute gas of these two-state sys-
tems, the spontaneous radiation is proportional to this population; often
this radiation is the experimental signal.

We use the same expressions for H and ρ as in the previous sections with
the sinusoidal applied field. This gives

H =
�

2

[ −ω◦ ωRe
+iωt

ωRe
−iωt +ω◦

]
Thus the resonance conditions are the same as those of a quantized spin 1/2
in a rotating magnetic field, or of a coupled two-state system after making
the rotating wave approximation.

We now write the basic equation for time evolution

ρ̇ =
1

i�
[H, ρ]−

[
Γ1ρaa Γ2ρab
Γ2ρba Γ1ρbb

]
+ Γ1

[
n◦ 0
0 0

]
↑ relaxation ↑ source

Consider first the steady-state solution with field off. The equation for time
evolution simplifies to

ρ̇ = −
[

Γ1ρaa − Γ1n◦ Γ2ρab
Γ2ρba Γ1ρbb

]
Steady state means that ρ̇ = 0, so the solution with the oscillating field off
is

ρoff =

[
n◦ 0
0 0

]
which shows that the only non-zero element of the density matrix is the
diagonal element corresponding to the population in |a〉, and that there are
n◦ “atoms” in that state.

We now consider the situation with the field on. We can achieve a simplifi-
cation by defining

ρ′ = ρ− 1

2

[
n◦ 0
0 n◦

]
(5.22)
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so that it satisfies an equation with a source term of σz symmetry

ρ̇′ =
1

i�
[H, ρ′]−

[
Γ1ρ

′
aa Γ2ρ

′
ab

Γ2ρ
′
ba Γ1ρ

′
bb

]
+

Γ1

2

[
n◦ 0
0 −n◦

]
Note that this redefinition changes only the diagonal elements of the density
matrix but leaves the off-diagonal elements the same. The redefinition
is useful in solving the above equation since it will turn out to be most
convenient to use the Pauli matrices only for the diagonal terms, while
using ρab and ρba = ρ∗ab for the off-diagonal terms. This is because we
are basically working the damped oscillator problem in which a complex
ρab provides the simplest way to deal with the phase angle between the
driving field and the oscillatory response of the system (which appears in
the off-diagonal matrix elements). Thus we use

ρ′aa = −ρ′bb = r3/2

and anticipate that ρab will oscillate at the driving frequency by substituting

ρab = Ae+iωt =⇒ ρ̇ab = (Ȧ+ iωA)e+iωt

Grinding out the commutator leads to only the following two independent
equations because the diagonal entries are the negative of each other, while
the off-diagonal entries are complex conjugates of each other

Ȧ =
i

2
ωRr3 − i(ω − ω◦)A− Γ2A (5.23)

ṙ3 = iωR(A−A∗)− Γ1r3 + Γ1n◦ (5.24)

1. Steady-state solution

The steady-state solution to these equations is found by setting Ȧ = ṙ3 = 0.
(Note that this is not equivalent to setting the off-diagonal matrix elements
of the density matrix equal to 0 since it does not imply A = 0.) So, we get

A =
1

2

i

Γ2 + iδ
ωR r3 with δ = ω − ω◦

and

A−A∗ =
iΓ2

δ2 + Γ2
2

ωR r3

which implies

r3 = n◦

(
1 +

Γ2

Γ1

ω2
R

δ2 + Γ2
2

)−1

= n◦
δ2 + Γ2

2

δ2 + Γ2
2 + (Γ2/Γ1)ω2

R
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Since we are interested in the population of the upper state, we use Eq.
(5.22) to get

ρbb = ρ′bb +
n◦
2

= −r3
2

+
n◦
2

(5.25)

Thus the steady-state population in the upper state is

ρbb =
n◦
2

(Γ2/Γ1)ω
2
R

δ2 + Γ2
2 + (Γ2/Γ1)ω2

R

(5.26)

The most noteworthy feature of the solution is that it has a Lorentzian
shape at all values of ωR. The width of the Lorentzian (the full-width-at-
half-maximum, or FWHM) is

Γ = 2

(
Γ2
2 +

Γ2

Γ1
ω2
R

)1/2

which is 2Γ2 for small oscillating fields and 2
√
Γ2/Γ1 ωR at very high os-

cillating fields. Thus it is T2 and and not T1 which determines the width
of the resonance curve. (The only effect of T1 is on the overall magnitude
of the upper state population.) The increase of Γ with increased oscillat-
ing field strength is known as power broadening even though the width
grows linearly with field, not the power.

2. Free induction decay

Now let us investigate what happens when an oscillating field that has been
on for a long time is suddenly turned off at t = 0. The situation is called
free induction decay, because the system is allowed to decay free from the
perturbing field.

If the field has been on for a long time such that t 	 T1 or T2, then the
system will be in a steady state, and at t = 0 one has

ρ◦bb =
n◦
2

(Γ2/Γ1)ω
2
R

δ2 + Γ2
2 + (Γ2/Γ1)ω2

R

and

A◦ =
n◦
2

(δ + iΓ2)ωR

δ2 + Γ2
2 + (Γ2/Γ1)ω2

R

Turning the field off simplifies the equations of motion for the density matrix
elements because ωR = 0.

Combining Eqs. (5.24) and (5.25), we get

ρ̇bb = −Γ1 ρbb
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which implies

ρbb = ρ◦bbe
−Γ1t

showing that the population in the upper state decays “freely” from its
steady-state value at the rate Γ1 once the field is turned off.

The situation for A is complicated by the fact that ω is not defined in the
absence of an external field. One knows, however, that a driven oscillator
oscillates only at its resonance frequency after a non-resonant driving force
is removed, so we can take ω = ω◦, which simplifies Eq. (5.23) to

Ȧ = −Γ2 A =⇒ A(t) = A◦e−Γ2t

so that

ρab(t) = A◦e−Γ2te+iω◦t

showing that the off-diagonal element not only decays freely from its steady-
state value at the rate Γ2 but also oscillates at ω◦.

The decoupling of the motions of ρbb and ρab in the absence of an oscillating
field makes plausible the assignment of the different decay rates Γ1 and Γ2.
Since the off-diagonal terms oscillate, they are the ones responsible for any
coherent oscillatory behavior of the system during its decay (spontaneous
emission requires only that ρbb �= 0). Thus an experiment that is sensitive
to the amplitude of this behavior will show a decay at Γ2. An example
is an NMR experiment where one measures the voltage induced by the
time-varying magnetization. If the experiment measures the intensity of
radiation from some oscillating moment, then the decay rate will be 2Γ2.

3. Damping of Rabi probability

We now consider the effects of damping on the Rabi probability in a two-
state system. We consider a resonance region into which ground state atoms
are fed at a rate Γ, and from which (partially excited) atoms leave at the
rate Γ per atom present in the region. This means that there is, on average,
one atom present in the resonance region, and that it has been there an
average time Γ−1. This average is crucial because, as we now show it will
remove the temporal oscillations in the Rabi transition probability. Finally,
this result will be checked against the density matrix result for this simple
form of damping.

Imagine that the resonance region is bathed in an electromagnetic field
oscillating away from resonance at ω = ω◦ + δ, and which couples the
states at a rate ωR. Then the average probability of finding the atom in



178 Resonance

the excited state |b〉 is

P̄b(δ) =

0∫
−∞

Γe+Γt dt P2(δ, t)

where Γe+Γt dt is the probability that the atom entered between −t and
−t+ dt and still remains in the system; and P2(δ, t) is the Rabi transition
probability for the atom to be in the upper state at t.

Changing the integration limits, the probability can be evaluated as

P̄b(δ) =
Γω2

R

ω′2
R

∞∫
0

dt e−Γt sin2 (ω′
Rt/2)

=
Γω2

R

ω′2
R

∞∫
0

dt e−Γt[1− cos(ω′
Rt)]/2

=
Γω2

R

2ω′2
R

[
1

Γ
− Γ

Γ2 + ω′2
R

]
which gets simplified to

P̄b(δ) =
1

2

ω2
R

δ2 + ω2
R + Γ2

One interesting result of the damping is immediately apparent: the oscillat-
ing structure present in P2(δ, t) as a function of δ (at long fixed time) has
been replaced by a smooth Lorentzian.

To check this against the density matrix result, we note that the damping
rate Γ applies to all atoms, irrespective of their state of excitation. There-
fore Γ1 = Γ2 = Γ. Also n◦ = 1 since we want an average of one atom in
the field at a time. So from Eq. (5.26)

Pb(δ) = ρbb =
n◦
2

(Γ2/Γ1)ω
2
R

δ2 + Γ2
2 + (Γ2/Γ1)ω2

R

=
1

2

ω2
R

δ2 + ω2
R + Γ2

Thus the density matrix treatment and the “by hand” treatment of this
simple relaxation mechanism give the same result.
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G. Problems

1. RF-induced magnetic transitions

Imagine that in an RF experiment you wish to induce Zeeman transi-
tions in Na atoms (I = 3/2) trapped in the ground 2S1/2 state, from
the |F = 2,mF = 2〉 to the |F = 2,mF = 1〉 sublevel. The atoms are in
a uniform field of 10 G along the z axis. They are surrounded by two one-
turn coils of 2 cm diameter carrying RF current of 1 ma (amplitude, not
peak-to-peak or rms) arranged to produce a rotating field in the xy plane.

(a) What is the RF magnetic field (in G)?

(b) What is the resonance frequency ω◦, and the Rabi frequency ωR?

(Hint: The magnetic field is very weak, or equivalently the field param-
eter x � 1. To work out ωR, assume that the interaction with the
rotating field has the same gF as the interaction with the static field.)

(c) For how long would you pulse the field to produce a π pulse (i.e. to
cause all the atoms to change state)?

(d) What changes in (a) to (c) above if the DC field is doubled to 20 G?

Solution

(a) The RF field will be of the form

BRF = B1 cosωt

where B1 is field at the center of a loop of radius a, and is given by

B1 =
2Iπa2

c

1

(a2)
3/2

=
2Iπ

ac

For the coil configuration given B1 = 0.63 mG.

(b) In a weak magnetic field of strength B◦, the energy shift of an |F,mF 〉
state is

WB = gFμBmFB◦

Thus the energy difference between the |F = 2,mF = 2〉 level and the
|F = 2,mF = 1〉 level is

ΔE = gFμBB◦ ≡ �ω◦
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For the F = 2 state of Na, � = 0, s = 1/2, J = 1/2, and I = 1/2, hence
the g factors are

gj = 1 +
J(J + 1) + s(s+ 1)− �(�+ 1)

2J(J + 1)
= 2

gF =

[
gj − gI

μN

μB

]
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
≈ 1

2

neglecting gI . Therefore

ω◦ =
μBB◦
2�

= 2π × 7 MHz

We get the same answer from the Breit-Rabi formula

E+
m = ah

[
−1

4
+

√
1 +mx+ x2

]
≈ ah

[
−1

4
+ 1 +

mx

2

]
(x � 1)

This gives for a change in m from 1 to 2 of

ΔE =
1

2
ahx =

1

2
ah

(gJ + g′I)μBB◦
(I + 1/2)ah

≈ 1

2
μBB◦

which implies

ω◦ =
μBB◦
2�

Using the fact that the interactions with B◦ and B1 are the same, we
get

ωR =
B1

B◦
ω◦ = 2π × 441 Hz

(c) If the length of the pulse is Tπ for a π pulse, then

ωRTπ = π =⇒ Tπ =
π

ωR
= 1.13× 10−3 s

(d) If the DC field is doubled (i.e. B◦ → 2B◦), then ω◦ → 2ω◦ because the
new field is still in the weak field regime. Both the parameters ωR and
Tπ are independent of B◦, and hence remain unchanged.
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2. Rabi transition probability

(a) Plot the Rabi transition probability vs ωRt for the following values of
detuning—δ = 0, ωR/2, ωR,

√
3ωR, and 3ωR.

(b) You should find that there is universal behavior for small ωRt. Find an
analytic form for this region using perturbation theory.

Solution

(a) The Rabi transition probability is given by

P21(t) =
ω2
R

ω2
R + δ2

sin2

(√
ω2
R + δ2

2
t

)

The figure below shows a plot of this function for different values of
detuning.

(b) As seen from the figure, all curves show the same behavior near the
origin. To find an expression for this universal behavior using time
dependent perturbation theory, we start with the magnetic resonance
Hamiltonian

H =
�

2

[ −ω◦ ωRe
+iωt

ωRe
−iωt ω◦

]
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The a2(t) coefficient obeys the equation

ȧ
(1)
2 (t) =

1

i�

�ωR

2
e−iωteiω◦ta

(0)
1 (t) =

ωR

2i
e−iδta

(0)
1 (t)

Using the initial conditions of a
(0)
1 (0) = 1 and a

(0)
2 (0) = 0, we get

a
(1)
2 (t) =

ωR

2i

∫ t

0

e−iδt′dt′ =
ωR

2i

e−iδt′

−iδ

∣∣∣∣∣
t

0

=
ωR

2δ

(
e−iδt − 1

)
Expanding e−iδt, we have

a
(1)
2 (t) =

ωR

2δ

(
−iδt+

δ2t2

2
+ . . .

)
Therefore to first order in ωRt

a
(1)
2 (t) = −i

ωRt

2

and the probability of transition is

P21(t) =
∣∣∣a(1)2 (t)

∣∣∣2 =
ω2
Rt

2

4
(independent of δ)

The answer can be verified from the Rabi formula. Defining δ = aωR

and approximating for small a, we have

P21(t) =
1

1 + a2
sin2

(√
1 + a2

2
ωRt

)

≈ 1

1 + a2

(√
1 + a2

2
ωRt

)2

=
ω2
Rt

2

4
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3. Steady-state solution for two-level system

Find ρbb [Eq. (5.26)] for a generalization of the situation considered in
section F of the chapter, which includes the following:

(i) Decay rate out of system: ρaa decays at Γa and ρbb at Γb (the source
term becomes Γan◦).

(ii) Level |b〉 spontaneously decays to level |a〉 at a rate Γs.

Show that the new result for ρbb is

ρbb =
n◦
2

(
Γ2

Γs + Γb

)
ω2
R

(δ2 + Γ2
2) +

(
Γa + Γb

2Γa

)(
Γ2

Γs + Γb

)
ω2
R

Solution

The general decay rates can be incorporated into the time evolution of the
density matrix elements by writing it as

dρ

dt
=

1

i�
[H, ρ]−

[
Γaρaa − Γsρbb Γ2ρab

Γ2ρba (Γb + Γs)ρbb

]
+ Γa

[
n◦ 0
0 0

]
where H is the resonance Hamiltonian used in the chapter

H =
�

2

[ −ω◦ ωRe
+iωt

ωRe
−iωt +ω◦

]
Thus the off-diagonal terms continue to relax at the rate Γ2, but Γ2 includes
a Γs/2 term for spontaneous decay. From the discussion in the chapter, the
off-diagonal element is

ρab = Ae+iωt

=⇒ ρ̇ab = (Ȧ+ iωA)e+iωt and ρ̇ba = (Ȧ∗ − iωA)e−iωt

Therefore the terms in the time evolution equation are

1

i�
[H,ρ] =−

i

2

[
−ω◦ρaa + ωRe

+iωtρba −ω◦ρab + ωRe
+iωtρbb

+ωRe
−iωtρaa + ω◦ρba ωRe

−iωtρab + ω◦ρbb

]

+
i

2

[
−ρaaω◦ + ρabωRe

−iωt ρaaωRe
+iωt + ρabω◦

−ρbaω◦ + ρbbωRe
−iωt ρbaωRe

+iωt + ρbbω◦

]

=−
i

2

[
A∗ωR − AωR ωRe

+iωt (ρbb − ρaa)− 2ω◦ρab

ωRe
−iωt (ρaa − ρbb) + 2ω◦ρba AωR − A∗ωR

]
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and⎡⎣ ρ̇aa
(
Ȧ+ iωA

)
e+iωt(

Ȧ∗ − iωA∗

)
e−iωt ρ̇bb

⎤⎦

= −
i

2

[
ωR(A

∗ − A) [ωR(ρbb − ρaa)− 2ω◦A] e+iωt

[ωR(ρaa − ρbb) + 2ω◦A
∗] e−iωt ωR(A− A∗)

]

−

[
Γaρaa − Γsρbb − Γan◦ Γ2Ae−iωt

Γ2A
∗eiωt (Γb + Γs)ρbb

]

which gives

Ȧ+ iωA =
iωR

2
(ρaa − ρbb) + iω◦A− Γ2A

Ȧ =
iωR

2
(ρaa − ρbb)− (iδ + Γ2)A

ρ̇aa = − iωR

2
(A∗ −A)− Γaρaa + Γsρbb + Γan◦

ρ̇bb = − iωR

2
(A−A∗)− (Γb + Γs) ρbb

Under steady state,

Ȧ = ρ̇aa = ρ̇bb = 0

=⇒ A =
iωR

2

(ρaa − ρbb)

Γ2 + iδ
and A∗ = − iωR

2

(ρaa − ρbb)

Γ2 − iδ

and ρ̇aa + ρ̇bb = −Γbρbb − Γaρaa + Γan◦ = 0

Therefore

ρaa =
Γan◦ − Γbρbb

Γa
= n◦ − Γb

Γa
ρbb

ρbb =
iωR

2

(A∗ − A)

Γb + Γs
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Using

A∗ −A = − iωR

2

[
ρaa − ρbb
Γ2 − iδ

+
ρaa − ρbb
Γ2 + iδ

]

= − iωR

2

(ρaaΓ2 + iδρaa − ρbbΓ2 − iδρbb)

Γ2
2 + δ2

− iωR

2

(ρaaΓ2 − iδρaa − ρbbΓ2 + iδρbb)

Γ2
2 + δ2

= − iωRΓ2

Γ2
2 + δ2

(ρaa − ρbb)

= − iωRΓ2

Γ2
2 + δ2

(
n◦ − Γb

Γa
ρbb − ρbb

)
and substituting, we get

ρbb =
iωR

2 (Γb + Γs)

−iωRΓ2

Γ2
2 + δ2

(
n◦ − Γb

Γa
ρbb − ρbb

)

=
ω2
RΓ2

2 (Γb + Γs) (Γ2
2 + δ2)

[
n◦ −

(
Γb

Γa
+ 1

)
ρbb

]
which implies

ρbb

[
2 (Γb + Γs)

(
Γ2
2 + δ2

)
ω2
RΓ2

+
Γb

Γa
+ 1

]
= n◦

so that

ρbb =
n◦

2 (Γb + Γs)
(
Γ2
2 + δ2

)
ω2
RΓ2

+
Γb

Γa
+ 1

=
n◦
2

(
Γ2

Γs + Γb

)
ω2
R

(Γ2
2 + δ2) +

(
Γb + Γa

2Γa

)(
Γ2

Γs + Γb

)
ω2
R

Quod erat demonstrandum.





Chapter 6

Interaction

I
n this chapter, we treat the interaction of electromagnetic (EM) radiation
with atomic systems using semiclassical techniques. The treatment

is semiclassical because, as mentioned in Chapter 2, “Preliminaries,” the
field is treated classically and only the atomic system is quantized. We
have already reviewed the relevant features of classical EM theory (in cgs
units) in that chapter which we will need for the atom-field interaction
Hamiltonian. When treating absorptive or scattering process, we shall not
consider the atom as a source of radiation here—instead we shall use the
equations for classical EM wave in a vacuum to describe the wave even
though it interacts with an atom. Thus we shall not find any change in the
intensity of the field as it passes the atom (even if the atom is excited by
the field). This is consistent with our classical field approach—a classical
field has many photons in it whereas the atomic system can add or subtract
only a few. The focus in this chapter will be on transitions that are single
photon, we reserve multiphoton processes for the next chapter.

187
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A. Interaction of EM radiation with atoms

1. Hamiltonian

Recall from Chapter 2 that the vector potential that solves the classical EM
wave equation, for a given value of the propagation vector �k and polarization
ε̂, is

�A(�r, t) =
cE
2iω

ε̂
[
ei(

	k·	r−ωt) + e−i(	k·	r−ωt)
]

(6.1)

where E is chosen so that it is the amplitude of the E field vector

�E(�r, t) = −1

c

∂ �A

∂t
= E ε̂ cos

(
�k · �r − ωt

)
(6.2)

The corresponding B field is

�B(�r, t) = ∇× �A = E
(
k̂ × ε̂

)
cos

(
�k · �r − ωt

)
(6.3)

showing that it has the same magnitude as the E field.

The Hamiltonian for the atom-field interaction is obtained by replacing the
mechanical momentum with the canonical momentum

�pmech → �pcanon = �pmech +
q

c
�A

for each charge q in the atomic system. Assuming that the interaction with
the nucleus is negligible in comparison with that for the electrons this is
equivalent to the substitution in the Hamiltonian (for each electron, but
we’ll just treat one electron atoms for now)

p2

2m
→ p2

2m
− e

mc
�p · �A+

e2

2mc2
| �A|2

Thus we may view the interaction Hamiltonian as

H int = − e

mc
�p · �A+

e2

2mc2
| �A|2 + gsμB

�S · (∇× �A)

≡ H ′ + H ′(2) + H ′(s)
(6.4)

The �S · (∇× �A) term accounts for the interaction of the intrinsic electron
spin with an external magnetic field. In general the second term H ′(2)

contributes significantly only at high intensities and for photon scattering
processes.

All wavelengths we shall deal with are much longer than the size of an atom.
Consequently, we shall never have to consider more than the first derivative
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in the spatial behavior of �A(�r, t). We expand from Eq. (6.1)

�A(�r, t) =
cE
2iω

ε̂

{
e−iωt

[
1 + i�k · �r − 1

2

(
�k · �r

)2

+ . . .

]
+ c.c.

}
and keep only the first two terms back in H ′. Then the matrix elements of
H ′ are

〈b|H ′|a〉 = − eE
2iω

[
e−iωtε̂∗ + e+iωtε̂

] · 〈b|�̇r|a〉
− eE

2ω

[
e−iωtε̂∗ · 〈b|�̇r �r|a〉 · �k − e+iωtε̂ · 〈b|�̇r �r|a〉 · �k

] (6.5)

where �̇r �r is a dyadic, and the * on ε̂ is necessary to get the correct result
for the scalar product.

2. Electric dipole approximation — E1

When the first term in Eq. (6.5) is non-zero, it dominates the second, which
can then be neglected—this is called the electric dipole approximation and
corresponds to ignoring the spatial variation of �A near the atomic system.
Radiative transitions thus coupled are called E1 transitions. In this approx-
imation, the matrix element of the interaction Hamiltonian is

〈b|H ′
E1|a〉 = − eE

2iω

[
e−iωtε̂∗ + e+iωtε̂

] · 〈b|�̇r|a〉 (6.6)

This is called the velocity form of the dipole matrix element. More fre-
quently a length form is used, which is obtained by using Schrödinger’s
equation

i� 〈b|�̇r|a〉 ≡ i�
d

dt
〈b|�r|a〉

= 〈b|�rH |a〉 − 〈b|H�r |a〉
= (Ea − Eb) 〈b|�r|a〉

where Ea = �ωa and Eb = �ωb are the respective energy eigenvalues of H
in the states |a〉 and |b〉.
Putting this in Eq. (6.6) gives

〈b|H ′
E1|a〉 =

eE
2

ωa − ωb

ω

[
e−iωtε̂∗ + e+iωtε̂

] · 〈b|�r|a〉 (6.7)

which is the length form of the dipole matrix element.

Note that Eq. (6.7) could be derived by treating the electric field as static,
interacting through a potential energy term

V (�r) = −eφ(�r) = +e �E · �r
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The matrix elements for V are then

〈b|V |a〉 = eE
2

[
e−iωtε̂∗ + e+iωtε̂

] · 〈b|�r|a〉 (6.8)

which agrees with Eq. (6.7) for ω = (ωa − ωb), i.e. in the region where the
oscillating field produces significant effects. Surprisingly, it is possible to
show that Eq. (6.8) is a better approximation than Eq. (6.7)—at least in the
long wavelength limit (essential for the dipole approximation to be valid)—
because it contains the contribution from H ′(2), which was neglected in
obtaining Eq. (6.7).

3. Higher approximations

The development of the higher terms in H int is carried out fully in a number
of textbooks and won’t be treated in detail here. It may be shown that the
second term in Eq. (6.5) gives rise to electric quadrupole radiation as well
as magnetic dipole radiation from the orbital motion of the electron. The
three strongest forms of radiative interactions [which all come from H ′ and
H ′(s) in Eq. (6.4)] involve

Type Symbol Operator Parity

Electric dipole E1 �P = −e�r −
Magnetic dipole M1 �M = −μB(�L+ gs�S) +

Electric quadrupole E2 ¯̄η = −e�r �r +

where the parity is negative or positive depending on whether the operator
does or does not change sign when �r → −�r. The E1 operator has negative
parity because it corresponds to a polar vector, while the M1 operator has
positive parity because it corresponds to an axial vector. Similarly, the E2
operator has positive parity because it is a dyadic of two polar vectors. In
a multi-electron atom the one-electron operators above must be summed
over all the electrons (but there are no cross terms in ¯̄η or �M).

Using the above operators, the matrix elements for the various types of
radiation become

E1 〈b|H int
E1 |a〉 = −E

2

[
e−iωtε̂∗ + e+iωtε̂

] · 〈b|�P |a〉

M1 〈b|H int
M1|a〉 = −E

2

[
e−iωt(k̂ × ε̂∗) + e+iωt(k̂ × ε̂)

]
· 〈b| �M |a〉

E2 〈b|H int
E2 |a〉 = −E

2

[
e−iωtε̂∗ + e+iωtε̂

] · 〈b|¯̄η|a〉 · �k
(6.9)
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From the expressions for the E and B fields in Eqs. (6.2) and (6.3), one

sees that the E1 operator corresponds to a −�d · �E interaction, while the M1
operator corresponds to a −�μ · �B interaction.
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B. Selection rules and angular distribution

1. General

The matrix elements for the various types of radiation in (6.9) possess
certain symmetry properties (parity for example) that forbid transitions
between states with the wrong relative symmetry. As a consequence, a
number of conditions must be satisfied in order to ensure the possibility of
a particular type of radiation—these are known as selection rules.

Frequently the term “selection rules” is taken to mean the selection rules
for electric dipole transitions. This has some merit because the matrix
elements for other types of transition are smaller by αn (where n ≥ 1), and
the selection rules may be broken to this order by interactions overlooked
in the derivation of the matrix element for E1 radiation. Viewed from
this perspective, there are the following reasons why “forbidden transitions”
may actually occur:

1. Higher-order radiative processes (e.g. E2, M1, etc.)

2. Multiphoton processes

3. Relativistic effects

4. Interactions with the nucleus (especially hyperfine)

5. Interactions with external fields

6. Collision-induced absorption or emission

From a theoretical perspective the angular distribution of spontaneous ra-
diation emitted by an excited atomic system is closely related to the topic
of selection rules because both are grounded on the symmetry properties
of the radiation and the system. The semiclassical approach adopted here
does not allow a detailed treatment of spontaneous emission, but all prop-
erties of the emitted radiation are the same as expected classically from a
charge distribution whose moments are

2Re
{〈a|O|b〉 eiωt

}
where O is the appropriate radiation operator from (6.9). (This statement
is based on the correspondence principle.)

In general, the matrix elements for the various radiative processes can be
simplified by using the Wigner–Eckart theorem for irreducible tensor oper-

ators T
(k)
q , where k is the rank of the tensor and q is the projection on the

quantization axis

〈njm|T (k)
q |n′j′m′〉 = 〈nj||T (k)||n′j′〉√

2j + 1
〈j′km′q|jm〉 (6.10)
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Here 〈nj||T (k)||n′j′〉 is called the reduced matrix element, and 〈j′km′q|jm〉
is a Clebsch–Gordan (C-G) coefficient for the addition of j1 = j′ and j2 = k
to get j. The C-G coefficient vanishes unless the following are satisfied

m = q +m′ m-selection rule

|j′ − k| ≤ j ≤ j′ + k triangular relation
(6.11)

The various operators in (6.9) are not irreducible tensors, but can be broken
up into such tensors. Many of the selection rules and all of the angular
distribution information come from the properties of the C-G coefficients.
When Eq. (6.10) is used in practice, the reduced matrix element is generally
determined by evaluating the left hand side for a particular case—generally
the stretch state with m = j, m′ = j′, and q = k, for which 〈j′kj′k|jj〉 =
1.

2. Electric dipole radiation

Now we shall discuss the interaction of the EM wave with an atomic system
in the electric dipole approximation. The E1 operator is easily made into
an irreducible tensor of rank 1 [k = 1 in Eq. (6.10)] with three components.
If we choose the quantization axis z to be along the direction of the light
propagation vector k̂, then the components are

P−1 = −e(x− iy)/
√
2 P0 = −ez P+1 = e(x+ iy)/

√
2

These can be written in terms of the spherical harmonics Y m
� (ignoring an

unimportant normalization constant) as

P−1 = −erY −1
1 P0 = −erY 0

1 P+1 = −erY +1
1

This form is particularly convenient for discussing the interaction of circu-
larly polarized light since only the scalar products

ε̂± · 〈b|P±1|a〉 and ε̂z · 〈b|P0|a〉
are not necessarily equal to zero. Thus σ− light couples state |b〉 to state
|a〉 only if 〈b|P−1|a〉 �= 0.

Imagine that state |a〉 has a total angular momentum ja and projection ma

and |b〉 is a state with jb and mb. Then, using the Wigner–Eckart theorem
we get

〈b|P−1|a〉 = 〈n′jbmb|P−1|njama〉 = 〈b||P−1||a〉√
2jb + 1

〈ja1ma − 1|jbmb〉

which shows that the C-G coefficient 〈ja1ma − 1|jbmb〉 �= 0 is required to
prevent 〈b|P−1|a〉 from vanishing. From (6.11) we see that this requires

mb = ma − 1 =⇒ Δm = −1

|ja + 1| ≥ jb ≥ |ja − 1| =⇒ Δj = 0,±1
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which are the selection rules for σ− light in absorption.

Similarly, we can show that the selection rules for σ+ light in absorption
are

Δm = +1 and Δj = 0,±1

When LS coupling is appropriate, the J-selection rule becomes an L-selection
rule because S does not change in an electric dipole transition; then Δ� = 0
is forbidden by the requirement that the parity of states |a〉 and |b〉 be
different for E1 radiation because the E1 operator has odd parity.

Linear polarization appears messier at first because

ε̂x · 〈b|P±1|a〉 = ± 1√
2

and ε̂x · 〈b|P0|a〉 = 0

Thus the selection rules for linear polarization give Δm = ±1 (remem-

ber the quantization axis is along k̂). In fact the situation is even more
complicated because an x polarized incident wave will excite states with
mb = ma + 1 and mb = ma − 1 coherently. This fact is often overcome
by using a quantization axis z′ along the x axis, i.e. oriented along �E but
perpendicular to k̂. In this coordinate system

ε̂x · 〈b|P ′
±1|a〉 = 0 and ε̂x · 〈b|P ′

0|a〉 = 1

So the selection rules on m become

Linear polarization Δm′ = 0

Circular polarization Δm′ = ±1 (as before)

The primes are a reminder that the unprimed quantization axis has been
chosen to be along the propagation direction of the field. It is important to
remember that EM radiation is transverse, that it must be a superposition
of states with helicity ±1 (i.e. mphoton = ±1 along k̂) and that it can-

not produce a transition between states with Δm = 0 along k̂, but only
Δm′ = 0 where the prime reminds us that a different quantization axis was
necessary to get this simple result.
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3. Higher-order processes

For higher-order radiation processes, we just give the selection rules because
they can be derived as was done for electric dipole radiation in the previous
section.

The M1 operator for magnetic dipole radiation corresponds to an irreducible
tensor of rank 1. Therefore we can show that the selection rules (for both
circular and linear polarizations) are with parity unchanged

Δm = 0,±1

Δj = 0,±1 with 0 → 0 forbidden

Similarly the E2 operator for electric quadrupole radiation corresponds to
an irreducible tensor of rank 2. Therefore the selection rules for both po-
larizations are with parity unchanged

Δm = 0,±1,±2

Δj = 0,±1,±2 with 0 → 0 forbidden
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C. Transition rates

In this section we find transition rates for closed two-state systems. A
closed system has no sources that transfer population into it or decay out
of it; the only damping mechanism is the spontaneous decay of population
in the upper state into the lower state. Two types of rates are considered—
saturated and unsaturated. The unsaturated rate is the microscopic rate
of transfer induced by the applied field per atom in the lower state to the
upper state and also from the upper state to the lower state. The saturated
rate is the net rate of transfer to the upper state by the applied field per
atom in the system. Under steady conditions the saturated rate equals the
total loss rate from the excited state by mechanisms other than stimulated
emission. We will consider two types of applied field—monochromatic
and broadband.

1. Saturated and unsaturated rates

The rates for two states |a〉 and |b〉 may be understood by referring to Fig.
6.1 below.

Figure 6.1: Absorption, stimulated emission, and decay rates for two
coupled states |a〉 and |b〉.

The straight lines represent the unsaturated rate (per sec) of transfer per
population in the initial state by the applied field Ru, with the arrows indi-
cating the direction of transfer. This rate is equal in both directions because
the absorption and stimulated rates involve the same factors (except for the

matrix elements |〈a|�P |b〉|2 and |〈b|�P |a〉|2 which are equal). The wavy lines
represent the spontaneous decay rates—the decay rate from state |b〉 to
state |a〉 is Γs; we also include transfer out of state |a〉 at Γa and state |b〉
at Γb, and add a counter-balancing source term (dotted line) n◦Γa, with
the intention of eventually taking these to zero to obtain a closed system.

The differential equations for population transfer to/from |a〉 and |b〉 involve
the respective populations na and nb. Adding up the transfer and decay
rates (except for the source term they are all population in the initial state)
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gives

ṅb = −nb[Γb + Γs +Ru] +Runa

ṅa = n◦Γa + nb(Γs +Ru)− (Ru + Γa)na

(6.12)

In steady state ṅa and ṅb are zero, and these equations may be solved for
Ru in terms of the ratio nb/n◦ by eliminating na

−nb [(Γb + Γs +Ru) (Γa +Ru)− (Γs +Ru)Ru] + n◦ΓaR
u = 0

which implies

Ru =
(Γb + Γs)Γa(nb/n◦)

Γa − (Γb + Γa)(nb/n◦)
(6.13)

The saturated rate is defined to be the net rate of transfer to state |b〉 per
atom in the system by the applied field. It may be found from

Rs = Ru(na − nb)/(na + nb)

or, since ṅb = 0, it is also equal to the total loss rate from state |b〉 excepting
field-induced transitions

Rs = nb(Γs + Γb)/(na + nb).

The saturated rate can be expressed simply in terms of the unsaturated
rate by noting that the rate equations in (6.12) yield (in steady state)

nb/na = Ru/(Γb + Γs +Ru)

so we have

Rs = Ru 1− nb/na

1 + nb/na

= Ru (Γb + Γs)

(Γb + Γs) + 2Ru

=
(Γb + Γs)

2

S

1 + S

(6.14)

where we have introduced the saturation parameter

S ≡ 2Ru/(Γb + Γs) (6.15)

which equals unity when the unsaturated rate equals half the decay rate.

Eq. (6.14) shows that Rs = Ru at low intensities for which S � 1; and
Rs → (Γs + Γb)/2 at high intensities for which S 	 1, i.e. Rs saturates
and no longer increases with applied power. The fraction S/[2(1 + S)] is
the fraction of population in the excited state, and approaches 1/2 at high
intensities.
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2. Rates for monochromatic excitation

Now we shall find the saturated and unsaturated rates for monochromatic
excitation. Our starting point is the steady-state population of state |b〉
for a system which is driven by an applied oscillating field with a Rabi
frequency of ωR and a detuning from resonance of δ derived in Eq. (5.26)
of Chapter 5, along with the rates described in the preceding section.

The only thing we need additionally is Γ2 the decay rate of the off-diagonal
density matrix elements. Since these decay like the coefficients c∗acb in the
wave function, they decay at the average rate for population in the two-
states, which gives

Γ2 = (Γa + Γb + Γs)/2

where the factor of 2 appears because ca(t) must decay at a rate Γa/2 in
order to make the population ρaa ∼ a∗a decay at rate Γa.

Thus the steady population is

nb = n◦
2Γ2

Γs + Γb

(ωR

2

)2
[(
δ2 + Γ2

2

)
+

(
Γa + Γb

Γa

)(
2Γ2

Γs + Γb

)(ωR

2

)2
]−1

Substituting for nb/n◦ in Eq. (6.13) yields a messy expression that simplifies
to

RMu =
2Γ2(ωR/2)

2

δ2 + Γ2
2

=
Γs(ωR/2)

2

δ2 + (Γs/2)2
=

ω2
R

Γs

[
1

1 + (2δ/Γs)
2

]
(6.16)

where Γs is the total spontaneous emission rate out of |b〉, and we have
used Γ2 = Γs/2 which is appropriate only when Γa and Γb are negligible
compared to Γs. We have replaced Ru with RMu because this is the unsat-
urated rate for monochromatic radiation. The above expression also
shows that the unsaturated rate has a Lorentzian lineshape with FWHM
of Γs.

The saturated rate for monochromatic radiation RMs is easily cal-
culated from the unsaturated rate by applying the general connection de-
veloped between these two quantities in the previous section. Choosing
Γb = Γa = 0 for a closed system, Eq. (6.14) gives

RMs =
ΓsR

Mu

Γs + 2RMu
=

Γ2
s(ωR/2)

2

Γs[δ2 + (Γs/2)2] + 2Γs(ωR/2)2

which yields

RMs =
Γs(ωR/2)

2

δ2 + ω2
R/2 + (Γs/2)2

=
ω2
R

Γs

[
1

1 + (2δ/Γs)
2
+ 2(ωR/Γs)2

]
(6.17)
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The expression shows that the lineshape of the saturated rate is Lorentzian,
just like the unsaturated one. It also exhibits two features characteristic of
saturation:

(i) The rate asymptotes to a finite value of Γs/2 when the field strength
increases without limit, i.e. ωR → ∞.

(ii) The width of the resonance exhibits power broadening (it increases
when ω2

R increases), and is equal to Γs

√
1 + 2ω2

R/Γ
2
s.

This formula is probably one of most important in atomic physics.

The fact that the result does not depend critically on Γa and Γb indicates
the validity of the underlying assumption that the effect of monochromatic
radiation on a system with several decay rates is simply to transfer popu-
lation between the states at the rate (per atom in each state) given above.

Often it is desirable to express RMu in terms of the incident intensity. For
monochromatic radiation polarized along z the intensity is

I =
c

8π
E2

Recall that the Rabi frequency [Eq. (5.15) in Chapter 5] is given by

ωR =
1

�
〈b|eEz|a〉 =⇒ ω2

R =
8πI

c�2
|〈b|ez|a〉|2 (6.18)

Thus the unsaturated rate of excitation due to a monochromatic beam of
radiation of frequency ω and intensity I from Eq. (6.16) is (for a closed
system with Γa = Γb = 0)

RMu
ab = RMu

ba =
8πI

c�2Γs
|〈b|ez|a〉|2

[
1

1 + (2δ/Γs)
2

]
(6.19)

The Lorentzian in square brackets is equal to 1 at exact resonance. There-
fore the rate on resonance is

RMu
ab

∣∣∣
δ=0

=
8πI

c�2Γs
|〈b|ez|a〉|2 (6.20)

3. Cross-section for absorption

It is often convenient, particularly for monochromatic radiation, to define a
total cross-section for scattering. The cross-section is the area per absorber
which scatters the incident beam of photons (at low-intensity, so we use the
unsaturated rate)

σab(ω) =
Absorption rate

Incident photon flux
=

RMu
ab (ω)

I/�ω
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Thus from Eq. (6.19) we get

σab(ω) =
8πω

c�Γs
|〈b|ez|a〉|2

[
1

1 + (2δ/Γs)
2

]

Written in this form σab(ω) (and the corresponding RMu
ab ) depends both on

the matrix element of z between |a〉 and |b〉, and the spontaneous emission
rate from |b〉. In the event that ja = 0 and that |a〉 is the only state to
which |b〉 decays at a significant rate then

Γs =
4k3

3�
|〈b|ez|a〉|2

as we shall show later.

Thus for a spin zero (ja = 0) ground state, we have

σab(ω) =
8πω/(c�) |〈b|ez|a〉|2
4k3/(3�) |〈b|ez|a〉|2

[
1

1 + (2δ/Γs)
2

]

= 6πλ̄2

[
1

1 + (2δ/Γs)
2

]
with λ̄ = k−1

(6.21)

Hence the cross-section at resonance is 6πλ̄2 independent of the matrix
element and the polarization of the light. It is a very large cross-section
(∼ 10−9 cm2 for visible light, larger for infrared).

The above cross-section represents an upper bound on reality. In practice
the cross-sections can be reduced by any factors which reduce the net transi-
tion rate—likely possibilities are additional sources of dephasing including
spontaneous decay routes of |b〉 or |a〉 to other states and non-radiative
channels, saturation at high ω2

R, and Doppler broadening.

4. Rates for broadband excitation

We define broadband excitation to be excitation whose spectral profile is
flat across the absorption profile of the system under study, and which has
no spectral sub-structure or correlations between components at different
frequencies. Thus a mode locked short pulse laser or a multi-mode laser
will not qualify. The dynamics of obtaining the saturated rate for broad-
band excitation RBs from the unsaturated rate for broadband excitation
RBu are the same as those for monochromatic excitation, and are already
covered. Therefore, we need present only a calculation of the unsaturated
rate for broadband excitation. We do this simply by integrating the unsat-
urated rate for monochromatic excitation over frequency. This procedure
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is justified by our assumption of no correlations between field components
at different frequencies—without this we would have to integrate these am-
plitude for excitation, square it, and divide by the time to get a rate.

Thus our expression for RBu follows from Eq. (6.16) for RMu. We integrate
overall frequency even though only the frequency region ω ≈ ω◦ contributes
significantly

RBu =

∞∫
−∞

RMu(ω, ωR) dω

=
πω2

R

2

∞∫
−∞

Γs/2π

δ2 + (Γs/2)2
dδ

=
π

2
ω2
R

We have written the bar in ω2
R to indicate that it is the transition frequency

per radian of frequency. Therefore it has dimensions of t−1 not t−2.

If we wish to express RBu in terms of intensity per radian of frequency Ī(ω),
we can integrate Eq. (6.19) to obtain

RBu =
4π2

c�2
|〈b|ez|a〉|2 Ī(ω) (6.22)

Here Ī(ω) has units of energy per area per sec per sec−1, i.e. energy per
area.
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D. Spontaneous emission

1. Thermal equilibrium — Einstein A (emission) and B
(absorption) coefficients

Historically the processes of emission and absorption of radiation were
known long before stimulated emission was predicted by Einstein.∗ He
deduced the existence of stimulated radiation by considering a thought ex-
periment in which atoms were brought into thermal equilibrium solely by
interaction with blackbody radiation. This was very fruitful juxtaposition
at the time because blackbody radiation has a quantum explanation (the
Planck radiation spectrum) whereas quantum mechanics was not yet dis-
covered (i.e. second quantization was known but not first quantization).
It is a useful combination for us because the Planck spectrum is derived
from a quantized radiation field, allowing us to obtain an expression for the
spontaneous emission rate Γs, which we would otherwise have to obtain by
redoing the interaction of the atom and field using a quantized (rather than
classical) radiation field.

Consider states |b〉 and |a〉 with Eb − Ea = �ω. In thermal equilibrium at
temperature T , the numbers of atoms in each state must be related by

nb/na = e−�ω/kBT (6.23)

If the only mechanism of interaction of the atoms is radiation, then these
populations must be established by steady-state blackbody radiation. (Ein-
stein realized that stimulated emission is necessary to counterbalance ab-
sorption so that the population of state |b〉 doesn’t exceed that of state |a〉
in the high temperature limit.) The blackbody density of states ρE(ω, T )
is: �ω times the Bose occupation number per mode nB(ω, T ) times the
density of vacuum modes ρm(ω) = ω2/(π2c3) [from density of states times
two polarizations]. Thus

ρE(ω, T ) =
�ω3

π2c3
nB(ω, T ) with nB(ω, T ) =

1

e�ω/kBT − 1

Now consider the steady-state population of states |a〉 and |b〉 as was done
earlier. The rate equations with Γa = Γb = 0 are

Ru = RBu = βρE(ω) (6.24)

where β is a constant related to the absorption coefficient which we will
find from our previous expression for the unsaturated rate for excitation by
broadband radiation.
∗English translation of the paper is available in Sources of Quantum Mechanics, B. L.
Van Der Waerden, ed. (Dover, New York, 1968). For my personal take on this paper,
see essay in Appendix C, “Einstein as Armchair Detective: The Case of Stimulated
Radiation.”
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The rate equations are easily solved for the ratio na/nb

na

nb
=

βρE(ω) + Γs

βρE(ω)
= e�ω/kBT (6.25)

where we have substituted the temperature dependence from Eq. (6.23).
Solving for Γs yields

Γs
ba = βρE(ω, T )[e

�ω/kBT − 1] =
�ω3

π2c3
β =

�k3

π2
β (6.26)

The Boltzmann factor and the equilibrium conditions have combined to
cancel out the denominator of the Bose population number, leaving us
with a relationship between the spontaneous decay rate and the absorption
coefficient which is independent of temperature. This relationship was first
derived by Einstein using different notation: the spontaneous decay rate
Γs was A, and the absorption coefficient β was 2πcB (different because the
spectral energy density was per wavenumber not per radian per second, and
state |a〉 was above state |b〉). So his relationship (between the Einstein
A and B coefficients) was

A = 8πhcν3 B

A very simple relationship exists between the unsaturated broadband rate
and the spontaneous decay rate—their ratio is simply nB(ω, T ) the average
number of photons per mode. To see this, note that Eq. (6.25) implies

Γs

βρE(ω)
=

Γs

RBu
= e�ω/kBT − 1

Hence

RBu

Γs
ba

=
1

e�ω/kBT − 1
= nB(ω, T )

This suggests that spontaneous emission may be regarded as stimulated
emission due to zero-point fluctuations.

2. Quantum mechanical expression for spontaneous
decay rate

Our objective here is to express the spontaneous decay rate in terms of
the transition matrix element. We first calculate the absorption coefficient
β from the results of the previous section for the unsaturated broadband
absorption rate.

We have from Eq. (6.24)

RBu = βρE(ω)
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and from Eq. (6.22)

RBu =
4π2

c�2
|〈b| ez |a〉|2Ī(ω)

Clearly we must express Ī(ω) in terms of ρE(ω) in order to find a quantum
expression for β.

Ī(ω) is the intensity of radiation polarized along z per unit area per sec per
radian per sec, whereas ρE(ω) is the energy density of unpolarized radiation
per unit volume per radian per sec. Hence,

Ī(ω) =
c

3
ρE(ω, T ) (6.27)

with c to account for the propagation of the energy density (this also makes
the dimensions jibe), and 1/3 because only 1/3 of the blackbody radiation
has the proper z polarization. Thus

β =
4π2

3�2
|〈b|ez|a〉|2 =⇒ B =

β

2πc
=

2π

3c�2
|〈b|ez|a〉|2 (6.28)

which expresses β in terms of the transition matrix element.

We can now express the spontaneous decay rate in terms of the matrix
element using Eq. (6.26)

Γs
ba =

4k3

3�
|〈b|�P |a〉|2

=
64π4ν3

3h
|〈b|�P |a〉|2 (traditional notation)

(6.29)

In this expression we have replaced ez by the dipole operator �P = −e�r to
give a more general expression which applies to the decay of state |b〉 to
state |a〉 by emission of light of any allowed polarization; it gives the same
result since |a〉 and |b〉 are coupled by only ez. The second expression is
the traditional one for the Einstein A coefficient in which the frequency is
measured in wavenumbers (ν = k/2π = ω/2πc).
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E. Order-of-magnitude of spontaneous emission

Now let us put numbers into some of the expressions for radiative processes
to estimate the order-of-magnitude of spontaneous emission rates for differ-
ent types of radiative processes.

1. Electric dipole radiation

The preceding expression for the spontaneous decay rate uses the dipole
operator �P and is the appropriate one for E1 radiation. Hence

ΓE1
ba =

4k3

3�
|〈b|�P |a〉|2

The spontaneous emission rate from level |B〉 to level |A〉 is the sum of the
decay rates to all the lower mA states of |A〉 (with this sum and using the

operator �P instead of ez, all states of level |B〉 decay at an equal rate)

ΓE1
BA =

4k3

3�

∑
mA

|〈B|�P |A,mA〉|2 (6.30)

We can express this in terms of oscillator strengths using the relation

∑
mA

|〈B|�P |A,mA〉|2 =
3

2

e2�2

m

−fBA

EB − EA

so that

ΓE1
BA = −2

e2

mc3
ω2
BAfBA = −2α2(ka◦)ωBAfBA

If we express the transition energy in atomic units

EB − EA = εBA

[
me4

�2

]
=⇒ k =

EB − EA

�c
= αεBAa

−1
◦

then

ΓE1
BA = −2α3

[
me4

�3

]
fBAε

2
BA

= −3.2130× 1010 fBAε
2
BA s−1

Note that this rate is proportional to ω2—this reflects the cancellation of
one power of the ω3 term in the spontaneous emission [k3 in Eq. (6.30)] by
the dipole matrix element.
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2. Electric quadrupole radiation

The spontaneous emission rate for a quadrupole transition is (after a sum
and integral over polarization and direction, respectively)

ΓE2
ca =

k5

10�
|〈c|e�r �r|a〉|2

Since one does not usually have ready access to a table of quadrupole os-
cillator strengths, it is often helpful to insert a complete set of states |b〉 in
the middle of the dyadic resulting in an expression containing the familiar
dipole matrix elements,

ΓE2
ca =

k5

10�

∣∣∣∣∣∑
b

〈c|�r|b〉 〈b|�er|a〉
∣∣∣∣∣
2

If the sum above is dominated by one intermediate state |b〉, then it is easy
to obtain the ratio of the electric quadrupole spontaneous decay rate from
|c〉 to |a〉 to the electric dipole spontaneous decay rate from |b〉 to |a〉. It is

ΓE2
ca

ΓE1
ba

=
k5ca/10�

4k3ba/3�

|〈c|�r|b〉|2|〈b|�er|a〉|2
|〈b|�er|a〉|2

=
3

40
|kca 〈c|�r|b〉|2 (kca/kba)3

This is small because kca 〈c|�r|b〉 is ∼ α(kcb/kca). Since the various k’s are
typically roughly equal, we see that

ΓE2
ca

ΓE1
ba

∼ α2

10
� 10−5

3. Magnetic dipole radiation

The expression for ΓM1 is the same as the one for for ΓE1 in Eq. (6.30),

except that �M replaces �P . The typical value for the matrix element is

〈b| �M |a〉 ≡ 〈b|μB(�L+ gs�S)|a〉 ≈ 1

2
αea◦

Therefore the decay rate is

ΓM1
BA =

4k3

3�

∑
mA

|〈B| �M |A,mA〉|2

≈ 4k3

3�

[
1

2
αea◦

]2
=

α5

3
ε3BA

[
e2

�a◦

]
= 2.85× 105 ε3BA s−1
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Thus the ratio of magnetic to electric dipole decay rates is

ΓM1
BA

ΓE1
BA

≈ 1

6
α2 εBA

−fBA

While the preceding calculations of ratios of transition rates for the various
one photon radiation processes give useful order-of-magnitude estimates,
this comparison obscures the important fact that these processes obey dif-
ferent selection rules and hence do not occur simultaneously between the
same two levels. Indeed, this is the only reason that E2 or M1 transitions
are observed—where E1 is allowed it proceeds ∼ 105 times faster than the
others. Thus M1 and E2 transitions become important only where E1 is
forbidden. For example, the D states in two electron atoms with the config-
uration . . . (n−1)p6 nsnd tend to lie above . . . ns2 but below . . . ns np, and
are forced to decay by E2 to . . . ns2. M1 transitions are usually important
when the ground state is split by hyperfine structure (e.g. in H or alkalis) or
fine structure (atoms with p or d valence electrons) since several low-lying
levels will then originate from the lowest configuration and will have the
same parity.
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F. Saturation intensities

The discussion so far has shown that the unsaturated rates for absorption
and stimulated emission of a transition are proportional to the applied inten-
sity of light. It is therefore convenient to define the saturation intensity
Is, because it sets an experimental scale for the intensity required to drive
a particular transition. The saturation intensity for monochromatic radia-
tion is defined as the intensity for which the unsaturated rate on resonance
is equal to half the decay rate, i.e.

RMu
ab

∣∣∣
δ=0

= Γs
ba/2 for I = Is

From the definition of the saturation parameter S in (6.15), we see that the
saturation intensity is also the intensity at which S = 1.

We similarly define a saturation intensity per cm−1 for broadband radiation
Īs as the intensity per cm−1 at which the unsaturated rate for broadband
radiation is equal to half the decay rate, i.e.

RBu
ab = Γs

ba/2 for Ī = Īs

The above definitions allows us to write the unsaturated rates in the follow-
ing form

RBu
ab =

Γs
ba

2

Ī(ω)

Īs(ωba)
← broadband

RMu
ab = Fba

Γs
ba

2

I(ω)

Is(ωba)

[
1

1 + (2Fbaδ/Γs
ba)

2

]
← monochromatic

where Fba is a numerical factor � 1, and is equal to the ratio of the sum
of all (radiative and non-radiative) dephasing processes for the |a〉 → |b〉
transition to Γs

ba. Thus Fba = 1 for an ideal closed two-state system in
which state |b〉 decays only by spontaneous emission and only to state |a〉.

1. Closed systems

(i) Broadband radiation

For broadband radiation in a closed system the saturation spectral density
Īs(ω) depends only on the frequency (not on the type of transition). This
may be seen from the unsaturated rate in Eq. (6.24) and the above definition
of Īs(ω), which gives that when Ī = Īs

RBu
ab = ρs(ω)βab = Γs

ba/2
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where ρs(ω) is the energy density per cm−1 corresponding to Īs(ω).

Combining this with Eq. (6.26) gives

ρs(ω) =
Γs
ba

2βba
=

�ω3

2π2c3

from which using Eq. (6.27)

Īs(ω) =
c

3
ρs(ω) =

�ω3

6π2c2

This shows that Īs(ω) is independent of any details of the system or the
transition, provided only that it is a two-state system.

The broadband unsaturated rate for a closed system is

RBu
ab =

Γs
ba

2

Ī(ω)

Īs(ωba)

which follows from the fact that RMu
ab is proportional to intensity and equals

Γs
ba/2 when I = Is.

(ii) Monochromatic radiation

For monochromatic radiation the saturation intensity Is(ω) depends lin-
early on the spontaneous decay rate in contrast to broadband excitation
when Īs was independent of the system. This follows from the fact that, on
resonance, both the monochromatic absorption rate and the cross-section
are independent of the dipole matrix element between |a〉 and |b〉, as we
have seen before in Eq. (6.21). Since the saturation intensity is the intensity
which produces a rate of absorption equal to Γs

ba/2, a larger Γs
ba implies a

larger Is.

To find the monochromatic saturation intensity we substitute the expression
for Γs in terms of the matrix element [Eq. (6.29)] into the rate of absorption
at resonance

RMu
ab

∣∣∣
δ=0

=
8π|〈b|ez|a〉|2

c�2Γs
ba

I(ω) =
6π

c�k3
I(ω)

Equating the above rate to Γs
ba/2 when I = Is yields

Is(ωba) =
c�k3

12π
Γs
ba =

�ω3

12πc2
Γs
ba

Thus the monochromatic unsaturated rate for a closed system is

RMu
ab =

Γs
ba

2

I(ω)

Is(ωba)

[
1

1 + (2δ/Γs
ba)

2

]
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It is also convenient to express ωR in terms of I and Is, which is done as
follows

ω2
R =

8πI

c�2
|〈b|ez|a〉|2 = Γs

baR
Mu
ab

∣∣∣
δ=0

= [Γs
ba]

2 I(ωba)

2Is(ωba)

(6.31)

Therefore, the monochromatic saturated rate given in Eq. (6.17) can be
written in terms of I as

RMs
ab =

Γs
ba

2

[
I/Is

1 + (2δ/Γs
ba)

2
+ I/Is

]
(6.32)

which shows that the saturation intensity Is is the intensity at which the
transition gets power broadened by a factor of

√
2.

2. Open systems

The results in the preceding subsection are applicable only to ideal closed
two-state systems with no decay or dephasing except spontaneous decay of
state |b〉 to state |a〉. Often it is necessary to deal with systems in which
the upper state has additional forms of spontaneous decay (e.g. because
there are intermediate levels or other levels near |a〉), or because there is
re-population of the state (e.g. due to collisions or Doppler broadening).

All of these mechanisms can be accounted for by using the density matrix
treatment of a general system with decay Γa and Γb from states |a〉 and |b〉
to states outside the system. In the solution for ρbb [Eq. (5.26) of Chapter
5] we take

Γ2 = (Γs
ba + Γa + Γb)/2 + Γnr

ba (6.33)

where

Γa =

(∑
i

Γs
ai

)
+Γnr

a and Γb =

(∑
i

Γs
bi

)
−Γs

ba +Γnr
b (6.34)

Thus Γ2 is augmented by the addition of non-radiative dephasing particular
to the |b〉 → |a〉 transition Γnr

ba; and Γa and Γb include spontaneous decays
to all other levels [except from |b〉 → |a〉 which is accounted for explicitly in
(6.33) and subtracted out in (6.34)] as well as non-radiative decays (again
excepting |b〉 → |a〉).
We define Fba as the ratio of spontaneous decay of |b〉 only to |a〉 to the
total dephasing, i.e.

Fba = Γs
ba/(2Γ2) � 1
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where the factor of 2 ensures Fba = 1 for an ideal two-state system for which
Γ2 = Γs

ba/2. Using Fba, we can write the monochromatic unsaturated rate
for an open system from Eq. (6.16) as

RMu
ba =

2(ωR/2)
2

Γ2

[
1

1 + (δ/Γ2)2

]

= Fba
ω2
R

Γs
ba

[
1

1 + (2δFba/Γs
ba)

2

]
Expressing this in terms of the saturation intensity Is(ω), we get

RMu
ba = Fba

Γs
ba

2

I(ω)

Is(ω)

[
1

1 + (2δFba/Γs
ba)

2

]
which shows that the line profile is lowered by the factor Fba and broadened
by the factor F−1

ba . Thus, this procedure allows the continued use of Eq.
(6.31) for ω2

R at the expense of lowering RMu
ba at δ = 0 by a factor of Fba.

The broadband unsaturated rate for an open system is the same as that
for a closed system—the saturation intensity (1 photon per mode) is the
same and so is the absorption rate. This follows from RMu

ba : although it
is lowered it is widened by the same factor, so its integral (the broadband
absorption rate) remains constant. Thus an open system also obeys

RBu
ba =

Γs
ba

2

Ī(ω)

Īs(ωba)

To find the saturated rate in open systems, one can simply use the expres-
sions for Rs in terms of Ru discussed earlier. This introduces no computa-
tional problems, but gives rise to a semantic one—the saturation intensities
are now no longer the intensities at which the saturation parameter S equals
unity. Therefore the saturation intensity should more properly be regarded
as a reference intensity.

Saturation in open systems is complicated by another phenomenon—optical
pumping. If Γb 	 Γa (i.e. if alternative spontaneous decay rates exist for
|b〉 but not for |a〉) then even weak irradiation can dramatically decrease
the total number of atoms in the system. Rs will be given correctly, but the
net excitation rate can be orders of magnitude below n◦Rs due to optical
pumping.
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G. Problems

1. Classical scattering in 2D

Consider the collisions of small particles with a hockey puck of radius R.
(This is a “hard sphere” in two, rather than three, dimensions.)

(a) What is the natural expression for σ2(θ), the 2D differential cross-
section?

(b) What is σ2(θ) for this case?

(c) Show that the total cross-section is what you would expect.

Solution

(a) Let the flux of particles crossing unit length in unit time be I.

The number of particles with impact parameter in the range b to b+db
= I db× 2 (for above and below the axis).

By definition of the scattering cross-section

σ2(θ) I dθ = number of particles scattered into angle θ and θ + dθ

Since the impact parameter uniquely determines the scattering angle,
the two quantities are equal, i.e.

I db× 2 = σ2 θ I dθ =⇒ σ2(θ) = 2
db

dθ

(b) For scattering from puck of radius R, the figure shows that

θ + 2φ = π =⇒ φ =
π

2
− θ

2

Using

sinφ =
b

R
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we get

b = R sinφ = R sin

(
π

2
− θ

2

)
= R cos

θ

2

Therefore the differential cross-section is (−ve sign not important)

σ2(θ) = 2
db

dθ
= R sin

θ

2

(c) The total cross-section is

σ =

∫ π

0

R sin
θ

2
dθ = −2R cos

θ

2

∣∣∣∣π
0

= 2R

which is expected for a “hard circle” scattering.

2. Rabi frequency from matrix element

Consider the two electric fields

�E1(�r, t) = E◦ẑRe
{
ei(kx−ωt)

}
and �E2(�r, t) = E◦ε̂+ Re

{
ei(kz−ωt)

}
These interact with a two-level system in which level |a〉 has � = 0 and level

|b〉 has � = 1 (ignore �S). The relevant radial integral is∫ ∞

0

y∗1 r y0 dr = d where y�’s are the radial wavefunctions.

(a) Find the intensity of each wave.

(b) Find the interaction Hamiltonian (in the electric dipole approximation)
for the two fields.

(c) Find the Rabi frequency for both cases. ωR is defined in terms of the
interaction matrix element. Check that on resonance P2 = sin2(ωRt/2).

(d) What are the Δm selection rules for both fields for absorption and
stimulated emission?

(e) Discuss the necessity of using the rotating wave approximation in the
two cases.
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Solution

The energy transported by an electromagnetic field is given by the Poynting
vector. Its average value is related to the intensity as

〈�S〉 = 1

2

c

4π
�E × �B∗ = Ik̂

(a) For both E fields

�E × �B∗ = E2
◦ ε̂×

(
k̂ × ε̂

)
= E2

◦ k̂ =⇒ I =
c

8π
E2
◦

(b) The interaction matrix element between two states is

〈b|H ′|a〉 = eE◦
2

ωa − ωb

ω

[〈b|ε̂∗ · �r|a〉 e−iωt + 〈b|ε̂ · �r|a〉 eiωt
]

(i) Field �E1

This field has ε̂ = ẑ and ε̂∗ = ẑ. Therefore the off-diagonal matrix
element is

〈b|H ′
1|a〉 =

eE◦
2

ωa − ωb

ω

(
e−iωt + eiωt

) 〈b|ẑ · �r|a〉
In terms of spherical harmonics this is

〈b|z|a〉 = 〈b|r cos θ|a〉 =
√

4π

3
〈b|rY10(θ, φ)|a〉

Evaluating this out gives

〈b|z|a〉 =
√

4π

3

∫
dV ψ∗

b (�r) r Y10(θ, φ)ψa(�r)

=

√
4π

3

2π∫
0

dφ

π∫
−π

dθ Y ∗
1m Y10 Y00

∞∫
0

dr y∗� r y0

=

√
4π

3

[
1√
4π

δm,0

]
d

=
d√
3
δm,0

The other matrix elements are

〈a|H ′
1|b〉 = 〈b|H ′

1|a〉∗
〈a|H ′

1|a〉 = 〈b|H ′
1|b〉 = 0 (by parity)

Therefore the interaction Hamiltonian is

H ′
1(t) =

eE◦d
2
√
3

ωa − ωb

ω
δm,0

[
0 eiωt − e−iωt

eiωt − e−iωt 0

]
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(ii) Field �E2

This field has ε̂ = ε̂+ and ε̂∗ = ε̂−. Therefore the off-diagonal element
is

〈b|H ′
2(t)|a〉 =

eE◦
2

ωa − ωb

ω

[〈b|ε̂− · �r|a〉 e−iωt + 〈b|ε̂+ · �r|a〉 eiωt
]

Using spherical harmonics, this is evaluated as

〈b|ε̂− · �r|a〉 = 〈b|r Y1−1(θ, φ)|a〉

=

√
4π

3

∫
dΩY ∗

1mY1−1 Y00

∞∫
0

dr y∗1 r y0

=
d√
3
δm,−1

and

〈b|ε̂+ · �r|a〉 = 〈b|r Y11(θ, φ)|a〉

=

√
4π

3

∫
dΩY ∗

1mY11 Y00

∞∫
0

dr y∗1 r y0

=
d√
3
δm,1

Therefore the interaction Hamiltonian is

H ′
2(t) =

eE◦d
2
√
3

ωa − ωb

ω

(
δm,−1

[
0 eiωt

e−iωt 0

]
+ δm,1

[
0 e−iωt

eiωt 0

])
(c) The interaction Hamiltonian using the Rabi frequency (in electric dipole

approximation) is written as

H ′(t) =
�

2

ωa − ωb

ω

(
0 ωRe

iωt

ωRe
−iωt 0

)
Comparing with (b), the Rabi frequencies in both cases is

ωR =
eE◦d√

3

To check the probability of transition on resonance ω = ωba, we make
the rotating wave approximation which is valid near resonance. There-
fore the interaction Hamiltonian simplifies to

H ′(t) = −�

2

[
0 ωRe

iωt

ωRe
−iωt 0

]
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Writing the solution as

ψ(t) =

[
a(t)
b(t)

]
and solving Schrödinger’s equation

H ′(t)ψ(t) = i�
dψ

dt

we get

ȧ(t) =
iωR

2
b(t) and ḃ(t) =

iωR

2
a(t)

which implies

b̈(t) = −ω2
R

4
b(t)

Using initial conditions of a(0) = 1 and b(0) = 0, this gives the solution
as

b(t) = sin

(
ωRt

2

)
=⇒ P2 = |b(t)|2 = sin2

(
ωRt

2

)
(d) Δm selection rules

(i) E1 field

Absorption: Δm = 0

Stimulated emission: Δm = 0

(ii) E2 field

Absorption: Δm = +1

Stimulated emission: Δm = −1

(e) The rotating wave approximation is necessary in order to get rid of the
counter-rotating term, which gets averaged during the interaction.
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3. Transitions in Na and H

1. The experimental lifetime of the 3p level in Na (which radiates at
589 nm) is 16.3 ns, and for the 2p level in H it is 1.60 ns. Find the
oscillator strengths f3s,3p for Na, and f2p,1s for H.

2. Estimate the lifetime of H in the F = 1 hyperfine level of the 1s state.
The decay of this level to the F = 0 hyperfine level gives rise to the
famous 21 cm line of radio astronomy. (You may assume that the
matrix element is μB in your estimate).

Solution

(a) The discussion in the chapter shows that the oscillator strength for a
|B〉 → |A〉 transition is related to the spontaneous decay rate as

fBA = − ΓE1
BA

2α2(ka◦)ωBA

(i) The 3p → 3s transition in Na

For this transition

λ = 589 nm and τ = 16.3× 10−9 s

Therefore the parameters are

Γ =
1

τ
= 6.13× 107 s−1

k =
2π

λ
= 1.07× 107 m−1

ωBA = kc = 3.2× 105 rad/s

Thus we get (using ωAB)

f3s,3p = 0.32

which has a positive sign because it is for absorption.

(ii) The 2p → 1s transition in H

For this transition

ΔE = RH

(
1− 1

22

)
= 10.2 eV and τ = 1.6× 10−9 s
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Therefore the parameters are

Γ =
1

τ
= 6.25× 108 s−1

ωBA =
ΔE

�
= 1.55× 1016 rad/s

k =
ω

c
= 5.17× 107 m−1

Thus we get

f2p,1s = −0.14

which is negative because it is for emission.

(b) The 21 cm line is an M1 transition because it is between two hyper-
fine levels of the ground state which have the same parity. From the
discussion in the chapter

ΓM1 =
4k3

3�
|〈b| �M |a〉|2 ≈ 4k3

3�
μ2
B

Therefore the decay rate is estimated as

ΓM1 =
4k3

3�

(
e�

2mc

)2

=
1

3

e2�k3

m2c2
= 2.9× 10−15 s−1

which gives the lifetime as

τ =
1

Γ
= 3.4× 1014 s



Chapter 7

Multiphoton

T
he advent of the tunable laser has made possible the study of processes
in which more than one photon is absorbed so that the atomic sys-

tem gains several �ω of energy—this chapter deals with such multiphoton
processes. Highly excited states may be populated by these mechanisms
creating population inversions with respect to intermediate states so that
lasing or superradiant emission (a form of coherent spontaneous emission
with short lifetime) occurs. It is even possible to observe lasing action from
virtual states (dressed atoms) as in coherent anti-Stokes Raman scattering
(CARS).

219
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A. Two-photon absorption

1. General considerations

We shall now calculate the transition rate for a two-photon transition. We
expect that this will require a second order perturbation treatment involv-
ing H ′

E1 rather than a first order treatment involving H ′(2) = e2A2/c2

because the H ′(2) matrix elements are so small. In consequence of using
second order perturbation theory, we expect to start from a state of one
parity and wind up in a state of the same parity, with a transition ampli-
tude involving a sum over intermediate states which differ in parity (and in
� by 1) from both of these other states. Thus two-photon processes could
occur from S → S or S → D with a sum over intermediate P states; or from
P → P with a sum over both S and D intermediate states.

For simplicity we assume temporarily that only one intermediate state con-
tributes. The level structure therefore looks like what is shown in Fig. 7.1
below.

Figure 7.1: Energy level scheme for two-photon transition coupled
through an intermediate state. The two photons have frequencies ω1

and ω2, and are detuned from the intermediate state.

The states are separated by energies �ωig and �ωfi, and in order to conserve
energy for the two-photon process we expect resonant behavior when the
sum of the two-photons’ energy equals Ef − Eg, i.e.

ωfg = ω1 + ω2

The two E fields are (in dipole approximation, so no spatial variation)

�E1(t) = E1ε̂1 cosω1t

�E2(t) = E2ε̂2 cosω2t
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2. Final-state amplitude from perturbation theory

Now we calculate the amplitude ai(t) of state |i〉 assuming boundary con-
ditions of

ai(0) = af (0) = 0 at t = 0

ag = 1 at all times

Using first order perturbation theory

i� ȧ
(1)
i = Hig a

(0)
g

we get

a
(1)
i (t) = (i�)−1

t∫
0

〈i|H ′(t′)|g〉 eiωigt
′

dt′

= (i�)−1

⎡⎣〈i|ε̂1 · �P |g〉 E1
2

t∫
0

[
ei(ωig+ω1)t

′

+ ei(ωig−ω1)t
′
]
dt′

⎤⎦
+ [same for field 2]

= −E1
2�

〈i| ε̂1 · �P |g〉
[
ei(ωig+ω1)t − 1

ωig + ω1
+

ei(ωig−ω1)t − 1

ωig − ω1

]
+ [same for field 2]

If we define the matrix elements as

M
(1)
ig ≡ 〈i|ε̂1 · �P |g〉 and M

(2)
ig ≡ 〈i|ε̂2 · �P |g〉 (7.1)

and neglect transients and counter-rotating terms, we get

a
(1)
i (t) = − 1

2�

[
E1M (1)

ig

[
ei(ωig−ω1)t − 1

]
ωig − ω1

+
E2M (2)

ig

[
ei(ωig−ω2)t − 1

]
ωig − ω2

]

where the first term is field 1 and the second from field 2.

In order to find a non-zero amplitude af (t) we proceed to second order in
perturbation theory

i� ȧ
(2)
f =

∑
i

Hfi a
(1)
i (t)

but we suppress the
∑

i because we are considering only one intermediate
state.
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Then

a
(2)
f (t) = (i�)−1

t∫
0

〈f |H ′i〉 a(1)i (t′) dt′

=
1

4�2

[
E2
1M

(1)
fi M

(1)
ig

ωig − ω1

ei(ωfg−2ω1)t − 1

ωfg − 2ω1

+
E2
2M

(2)
fi M

(2)
ig

ωig − ω2

ei(ωfg−2ω2)t − 1

ωfg − 2ω2

+
E2E1M (2)

fi M
(1)
ig

ωig − ω1

ei(ωfg−ω1−ω2)t − 1

ωfg − ω1 − ω2

+
E1E2M (1)

fi M
(2)
ig

ωig − ω2

ei(ωfg−ω2−ω1)t − 1

ωfg − ω1 − ω2

]

(7.2)

where the matrix elements are defined in an analogous manner to what
was done in (7.1), and again we have neglected the non-resonant counter-
rotating and transient terms. The first two terms in this expression are for
two-photon excitation by �E1 and �E2 separately, while the third and fourth
terms are due to two-photon excitation by �E1 and �E2 together.

3. Transition rate

In practice the previous expression must be generalized by summing over
all available intermediate states. (Note that there is no restriction that the
intermediate states have energy between �ωg and �ωf .) This can produce
interesting interference effects, particularly when the intermediate state is
split (say by spin-orbit effects) and one laser frequency is adjusted to be
in between the components. Further interference can arise between the
various terms in Eq. (7.2), especially the second and third.

Often only one of the terms in Eq. (7.2) will contribute significantly because
only one of the denominators, e.g. (ωig − ω1)(ωfg − ω1 − ω2), is close to

zero. (Obviously only one term contributes if only one field, say �E1, is
present and (ωfg − 2ω1) ≈ 0). So we shall look at the probability that
the system is in the upper state assuming that only the third term in Eq.
(7.2) contributes. This we denote P (2) to emphasize that it is the 2nd order
perturbation theory result for two-photon process.

P
(2)
f (t) = |a(2)f (t)|2

=
E2
1E2

2

4�4

[
M

(2)
fi M

(1)
ig

ωig − ω1

]2

sin2 [(ωfg − ω1 − ω2)t/2]

(ωfg − ω1 − ω2)2

(7.3)
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since |eix − 1|2 = |eix/2 − e−ix/2|2 = 4 sin2(x/2)

The last term is not exact and leads to problems in interpreting this expres-
sion. For one thing it lacks the power broadening term present in analogous
expressions for a two-state system—this is because we assumed ag(t) = 1,
so did not allow the system to “cycle” between states |g〉 and |f〉. Further-
more, we have not allowed for the finite lifetime of state |f〉.
We remedy these difficulties by arguing that Eq. (7.3) must be general-
ized so that it is similar to the Rabi transition probability equation found
previously for monochromatic excitation of an undamped two-state system

P
(2)
f (t) =

ω2
R

ω′2
R

sin2
(
ω′
Rt

2

)
This may be achieved by defining

ω2
R =

E2
1E2

2

4�4

[
M

(2)
fi M

(1)
ig

ωig − ω1

]2

δ22 = (ω1 + ω2 − ωfg)
2

ω′2
R = ω2

R + δ22

Pursuing this argument, we conclude that the introduction of a Γ2 type
coherence dephasing rate Γfg for the final state will lead to an (unsaturated)
rate of excitation given by

R
(2)
gf =

2Γfg(ωR/2)
2

δ2 + Γ2
fg

=
ω2
R

2Γfg

[
1

1 + (δ/Γfg)2

]
Thus in general

R
(2)
gf =

E2
1E2

2

8�4Γfg

[∑
i

(
M

(2)
fi M

(1)
ig

ωig − ω1 − iΓig
+

M
(1)
fi M

(2)
ig

ωig − ω2 − iΓig

)]2

×
[

1

1 + (δ/Γfg)2

] (7.4)

where we added the term −iΓig to ωig to account for dephasing of the
|g〉 → |i〉 transition, a complication of concern only when the intermediate
state |i〉 is almost resonant with ω1. We also added back the term previously
omitted from Eq. (7.2) which accounts for resonance arising when ω2 is
near one of the ωig’s. The sum over the intermediate states i is put in to
emphasize that it is the amplitudes of the various paths from |i〉 → |f〉
which add and not the probabilities.

Note: If |g〉 decays at Γg and |i〉 decays at Γi, then Γig = (Γi +Γg)/2 and
the coherences of |i〉 and |g〉 decay at this rate. The denominator of Eq.
(7.4) becomes (upon squaring the modulus) [(ωig − ω1)

2 + (Γig)
2], giving a

FWHM of 2Γig.
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B. Two-photon de-excitation processes

1. Two-photon stimulated emission

Any absorption process implies the existence of a corresponding stimulated
emission process. While thermodynamic arguments like the ones used by
Einstein in his discussion of the A and B coefficients provide the most
rigorous justification of this statement, it is more easily seen in the case of
two-photon processes by using time dependent perturbation theory. One
simply considers the three-state system we have been discussing with the
initial conditions of

af (0) = 1 and ag(0) = ai(0) = 0

Using the counter-rotating terms in the Hamiltonian and applying second

order perturbation theory will result in an expression for R
(2)
fg which con-

tains the same terms as Eq. (7.4) except that the first resonance denomi-
nator will be (ωfi − ω2 − iΓfi/2) instead of (ωig − ω1 − iΓig/2). Since the
two-photon rate is negligible unless ωfi + ωig ≈ ω2 + ω1, these denomina-
tors will be close to zero only when the intermediate state |i〉 is nearly on
resonance (in which case stepwise two-photon transitions will become im-

portant and the preceding calculation of R
(2)
fg may no longer be valid). We

term the transfer of population from state |f〉 to state |g〉 as two-photon
stimulated emission.

We can describe the two-photon stimulated emission process by saying that
the field at ω1 produces a virtual state |v〉, and that the field at ω2 stimulates
the |f〉 → |v〉 transition. Thus we are led to define a B coefficient for the
virtual state |v〉 such that (remember B is for broadband radiation)

Bfvρ(ω) = R
(2)
fg

where R
(2)
fg is the rate at which the system goes from |f〉 → |i〉 under the

influence of monochromatic radiation at ω1 and broadband radiation at ω2.

The easiest way to find B is to note that Eq. (6.18) for ωR in the presence
of monochromatic radiation and Eq. (6.28) for B (from Chapter 6), both
contain the term π|〈b|ez|a〉|2/(c�2). They combine to yield

B =
ω2
R

12I
=

2πω2
R

3c E2◦

Replacing ω2
R we get

Bfv =
π

6c

[
E1M (1)

ig

�(ωig − ω1)

]2 [
M

(2)
fi

�

]2
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We could perform a similar calculation in which we regarded state |v〉 as
being produced by ω2 and calculated Bvg, the rate of stimulated emission
from this virtual state to the ground state.

2. One stimulated and one spontaneous photon

Pursuing this analogy further, we would expect that, if the final state were
populated, it could decay spontaneously to the virtual state, emitting a
photon of frequency ω2 = ωfg−ω1. This process would have anA coefficient
for decay to state |i〉 of

Af→i = 8πhcν3 B =
16π4ν3

3h

[
E1M (1)

ig

�(ωig − ω1)

]2

|〈f |�P |i〉|2 (7.5)

where ν is the wavenumber measured in cm−1. Note that ε̂2 · �P has been
replaced by �P since we must sum over the polarization states of the spon-
taneously emitted photon. This is identical to the usual expression for the
A coefficient [Eq. (6.29)] if we replace

|〈b|�P |a〉|2 → |〈f |�P |i〉|2
[

E1M (1)
ig

2�(ωig − ω1)

]2

In other words, spontaneous emission proceeds to virtual state |v〉 at the
rate it proceeds to the real state |i〉 times a factor which is the square of
the ratio of the Rabi frequency produced by E1 to the detuning of field 1
from state |i〉.
The situation discussed above is rather artificial because it requires popu-
lation in state |f〉 which could (and would) decay to state |i〉. [It could
be realized in H where 2s metastable states could have their natural two-
photon decay rate enhanced by a strong field, or possibly in Ne atoms
in He-Ne discharge since appropriate states are known to be populated.]
But its utility is mainly to obtain Eq. (7.5) which will be used to relate
stimulated and spontaneous Raman processes in the next section.
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C. Raman processes

1. General

We have so far been considering a system in which Ef > Ei > Eg. Now we
consider a system in which Ei is the highest energy and Ef and Eg can lie
in either order. This is a situation which can lead to Raman scattering. We
consider for the moment a system with energy levels that look as shown in
Fig. 7.2 below.

Figure 7.2: Energy level scheme for two-photon transition similar to that
in Fig. 7.1 except that the intermediate state is above both the ground
and final states.

As the figure shows, the levels are similar to those involved in two-photon
absorption except that Ef < Ei so that Efi < 0. It is also possible that
Ef < Eg—this changes nothing fundamental.

The phenomenon involved in Raman process is that radiation at frequency
ω1 is incident on the molecules in state |g〉. These are virtually excited to
state |v〉 and then they decay to state |f〉, emitting photons whose frequency
ω2 satisfies

ω2 = ω1 − ωfg

where ω2 is called the

Stokes component if ω2 < ω1

anti-Stokes component if ω2 > ω1

2. Stimulated Raman scattering

Now we consider the case in which oscillating fields are present at both
ω1 and ω2 so that the system is driven from |g〉 to |f〉 by a simultaneous
two-photon process. This is a process in which a photon is absorbed at ω1

and another is stimulated at ω2 (so that the beam at ω2 grows in intensity).
The preceding treatment of two-photon absorption is applicable except that
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ωfi < 0. This introduces only one charge—in the derivation of Eq. (7.2)
counter-rotating terms with denominators ωig +ω2 and ωfg −ω1+ω2 were
discarded and those with ωig − ω2 and ωfg − ω1 − ω2 were kept. Now we
must keep the former terms, since they can produce resonances when that
equation is satisfied. Thus we find instead of Eq. (7.2)

a
(2)
f (t) =

1

4�2

[
E2E1M (2)

fi M
(1)
ig

ωig − ω1 − iΓig/2

ei(ωfg−ω1+ω2)t − 1

ωfg − ω1 + ω2

+
E1E2M (1)

fi M
(2)
ig

ωig + ω2 − iΓig/2

ei(ωfg−ω1+ω2)t − 1

ωfg − ω1 + ω2

]
(The terms with ωfg−ω1+ω1 or ωfg−ω2+ω2 in the denominator produce
effects only for Ef = Eg; this is called Rayleigh scattering and is neglected
here.)

This amplitude may be used to calculate a transition rate for the overall
two-photon process. The result is the same as Eq. (7.4) except one must
modify the two-photon detuning parameter to

δ′2 = ω1 − ω2 − ωfg

3. Spontaneous Raman scattering

The first type of Raman process to be predicted or observed involved the
absorption of photon at ω1 and the spontaneous emission of one at ω2. The
rate for this may be found from the results of the preceding section; just
as we found the rates for this stimulated processes above we find [from Eq.
(7.5)]

Aj
g→f =

64π4ν32
3h

[∑
i

(
E1 〈f |ε̂j · �P |i〉M (1)

ig

2�(ωig − ω1)
+

E1M (1)
fi 〈i|ε̂j · �P |g〉

2�(ωif + ω1)

)]2

(7.6)

This expression has been simplified by noting that

ωig + ω2 = ωig + ω1 − ωfg = ωif + ω1

Since in Raman scattering there are frequently no near-resonant intermedi-
ate states the entire sum over intermediate states has been retained. We
have also kept the term with denominator ωif + ω1; this term corresponds
to emission of a photon at ω2 and subsequent absorption at ω1—it can
give a large contribution if |g〉 is an excited state so that some |i〉 states
lie ≈ �ω1 below Ef . It should be noted that we have defined A so that it
has a vector component j, which corresponds to the polarization ε̂j of the

Raman scattered light. The intensity associated with Aj
g→f is

Ijg→f = hcνAj
g→f



228 Multiphoton

The quantity inside the square brackets of Eq. (7.6) is a second rank tensor
(if E1ε̂1 is brought outside) which is related to the polarizability tensor. This
expression agrees with the standard expression, although our derivation
is unconventional. The usual derivation is to calculate the polarizability
tensor of the atom or molecule and then to find the spontaneous radiation
from the radiating dipole

�P (t) = ←→α �E1 cosω1t

The possibility of radiating at a frequency different from ω1 arises from the
time-dependent nature of some components of the ←→α which appear in the
quantum-mechanical calculation.

Frequently Raman scattering is done in molecules, and the final levels |f〉
are rotational satellites. This introduces the problem of transforming the
polarizability tensor calculated in the body frame of the molecule back
into the lab frame—a complicated, but standard, procedure in molecular
spectroscopy. Detailed discussion of the selection rules and intensities that
result is in J. A. Koningstein’s book.∗ Koningstein discusses several varia-
tions on regular Raman scattering—two-photon absorption with emission
of a single Raman-shifted photon, near-resonant Raman scattering, and
stimulated Raman emission and absorption.

4. Raman scattering cross-section

Since the spontaneous Raman process is linear in the applied field, it is
possible to define a cross-section for it

σR
gf (ω1) =

∑
mf

�ω1
Agf

I1

=
512π5ν1ν

3
2

3

∑
mf

[∑
i

(
〈f,mf |�P |i〉M (1)

ig

2�(ωig − ω1)
+

M
(1)
fi 〈i|�P |g〉

2�(ωif + ω1)

)]2

In spite of the very large numerical factor outside the brackets, this is a tiny
cross-section if there is no resonance enhancement—typical Raman cross-
section for atoms are ∼ 10−29 cm2 in the absence of such enhancement. For
molecules, the cross-section is typically 10 to 100 times smaller for cases
in which |f〉 and |g〉 have different vibrational quantum numbers due to
imperfect vibrational overlap (e.g. Franck–Condon factors).

∗Introduction to the Theory of the Raman Effect, D. Reidel Publishing Co. Dordrecht-
Holland (1972).
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D. Dressed atom for multiphoton processes

1. Two-photon absorption

The idea of this treatment is that E field 1 dresses atomic states |g〉 and |i〉,
and then E field 2 causes transition to the final state |f〉.
E field 1 has strength E1, polarization ε̂1, and frequency ω1, so its Rabi
frequency is defined in the usual manner as

ωR1 =
E1
�

〈i|ε̂1 · e�r|g〉

We define δ1 ≡ ω1 − ωig; and choose δ1 < 0 so that dressed atom state
|t−〉 → |g〉 as ωR1 → 0. From Eq. (3.26) of Chapter 3, we know that

|t−〉 = e−i(2ωi−ω′
R1+δ1)t/2

[−eiω1t sin θ |g〉+ cos θ |i〉]
Approximating the effective Rabi frequency for |δ1| 	 ωR (and since δ1 < 0)
as

ω′
R1 ≡

√
δ21 + ω2

R1 ≈ −δ1 − ω2
R1

2δ1

we get the frequency of |t−〉 as

ω− =
2ωi − ω′

R1 + δ1
2

≈ ωi + δ1 +
ω2
R1

4δ1

= ωi + ω1 − ωi + ωg +
ω2
R1

4δ1

= ωg + ω1 +
ω2
R1

4δ1

[The term ω2
R1/(4δ1) is the AC Stark shift of |g〉, which is negative because

δ1 < 0.]

The cosine factor in |t−〉 can be approximated for |δ1| 	 ωR as

cos θ =

[
ω′
R1 + δ1
2ω′

R1

] 1
2

≈
[−δ1 − ω2

R1/(2δ1) + δ1
−2δ1

] 1
2

=

[
ω2
R1

4δ21

] 1
2

=
ωR1

2δ1

Thus we get

|t−〉 ≈ ωR1

2δ1
e−i(ωg+ω1+ω2

R1/4δ1)t |i〉 (7.7)
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We now want to find ω2R, the Rabi frequency for the two-photon transition
to |f〉 due to the application of the second laser. E field 2 of the second laser
has strength E2, polarization ε̂2, and frequency ω2, so its Rabi frequency is

ωR2 =
E2
�

〈f |ε̂2 · e�r|i〉

The transition to |f〉 is from |t−〉, and therefore the two-photon transition
frequency is given by

ω2 =
E2e−iω2t

�
〈f |ε̂2 · e�r|t−〉

Substituting for |t−〉 from Eq. (7.7), we get

ω2 =
ωR1

2δ1

E2
�

〈f |ε̂2 · e�r|i〉 e+iωf te−iω2te−i(ωg+ω1+ω2
R1/4δ1)t

=
ωR1

2δ1
ωR2 e

−i[(ω1+ω2)−(ωf−ω2)+ω2
R1/4δ1]t

= ω2R e−iδ2t

with the definitions

ω2R ≡ ωR1ωR2

2δ1
and δ2 ≡ (ω1 + ω2)− (ωf − ωg) +

ω2
R1

4δ1

Resonance (when δ2 = 0) occurs at the frequency

ω1 + ω2 = ωf − ωg − (ωR1/2)
2

δ1
> ωf − ωg (for δ1 < 0)

The (unsaturated) transition rate is

Ru
2,g→f =

2Γ2gf (ω2R/2)
2

δ22 + Γ2
2gf

This treatment augments the usual two-photon treatment by inclusion of
the AC Stark shift for state |g〉, but it misses the stark shift of |f〉. This
can be comparable magnitude.



Dressed atom for multiphoton processes 231

2. Raman scattering

Our aim here is to find the spontaneous decay rate for a Raman process
using the dressed atom picture. For this we want to find the dressed atom
state which correlates with atomic state |g〉 as ωR → 0 (for δ < 0). We
denote the final state as |g′〉 to emphasize the fact that it has the same parity
as state |g〉. From the discussion in the previous section, the appropriate
dressed atom state is |t−〉. Spontaneous decay from this state is called
spontaneous Raman scattering and occurs at a rate

ΓR
gg′ =

4k′3

3�
|〈g′|�P |t−〉|2

Using the expression for |t−〉, and noting that 〈g′|�P |g〉 = 0 (same parity),
we have

ΓR
gg′ =

4k′3

3�

∣∣∣〈g′|�P cos θ|i〉 ei[ωg′−(2ωi+δ−ω′
R)/2]t

∣∣∣2
=

4k′3

3�

[
ω′
R + δ

2ω′
R

] ∣∣∣〈g′|�P cos θ|i〉 ei[ωg′−(2ωi+δ−ω′
R)/2]t

∣∣∣2
The emission is at the frequency in the exponent in the above expression

ωRam = −
[
ωg′ −

(
ωi +

δ

2
− ω′

R

2

)]
= −ωg′ + ωi + δ −

[
ω′
R + δ

2

]
= [ω − (ωg′ − ωg)]−

[
ω′
R + δ

2

]
This expression for ωRam differs from conventional expositions on Raman
scattering because it contains the AC Stark shift of the state |g〉 due to the
laser at ω (but it ignores the equally important shift of state |g′〉).
We have assumed δ < 0, so that when |δ| 	 ωR we can expand

ω′
R + δ

2
≈ |δ|

2

[
1 +

ω2
R

2δ2
− 1

]
=

ω2
R

4δ

Thus the transition rate in this limit becomes

ΓR
gg′ ≈ k′3

3�

ω2
R

(ωig − ω)2
|〈g′|�P |i〉|2
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This dressed atom approach assumes that there is only one intermediate
state |i〉, and neglects the counter-rotating term. A more complete expres-
sion is

ΓR
gg′ =

k′3

3�

∑
mg′

[∑
i

(
1

ωig − ω
+

1

ωig + ω

) 〈g′|�P |i〉 〈i|E1ε̂1 · �P |g〉
�

]2

It is necessary to sum over the final mg′ states if jg′ �= 0. Note that the
counter-rotating term gives a comparable contribution when ω � ωig (as
is the case for visible and invisible gases), and strongly affects the ω → 0
limit.
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E. Problems

1. Magnitude of Raman scattering cross-section

(a) If |g〉 is the ground state from which the atom (molecule) is excited, |i〉
is the intermediate state, and |f〉 is the final state, find the spontaneous
Raman cross-section in the presence of an electric field of the form

�E(t) = E ε̂ cosωt
exciting the |g〉 → |i〉 transition. Assume that all the matrix elements
are equal

〈i|�P |g〉 = 〈i|�P |f〉 = dea◦

and that ωig 	 ω, the frequency of the exciting light.

(b) Estimate the cross-section σR
gf for light at 5000 Å being Raman shifted

by 300 cm−1 from a molecule whose first electronic excitation energy
is ≈ 1 Ry. Take d = 1.

Solution

(a) The spontaneous Raman scattering cross-section is

σR
gf (ω) =

Scattering rate

Incident photon flux
=

Agf

I/�ω
= �ωAgf

8π

cE2

From the chapter, we have (for one intermediate state)

Agf =
64π4ν32
3h

[
E 〈f |�P |i〉Mig

2�(ωig − ω)
+

EMfi 〈i|�P |g〉
2�(ωif + ω)

]2

where ν2 is the wavenumber (= k2/2π) of the spontaneously emitted

light, and M ’s are matrix elements of ε̂· �P between the respective states.
Assuming that ωig 	 ω, and hence that ωif is also 	 ω for a small
Raman shift, this gives

σR
gf (ω) =

512π5νν32
3

[
〈f |�P |i〉Mig

2�ωig
+

Mfi 〈i|�P |g〉
2�ωif

]2

Taking all matrix elements to be dea◦, we get

σR
gf (ω) =

512π5νν32
3

[
d2e2a2◦
2�ωig

+
d2e2a2◦
2�ωif

]2
=

512π7νν32d
4e4a4◦

3h2

[
ωif + ωig

ωigωif

]2
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(b) The exciting light wavelength is 5000 Å; therefore the corresponding
wavenumber is ν = 20 000 cm−1.

For an excited state energy of ≈ 1 Ry, the energy of the intermediate
state |1〉 is 1 Ry. Therefore

�ωig = 13.6 eV =⇒ ωig = 20.6334× 1015 rad/s

The Raman shift is 300 cm−1; hence

ωif = ωig − 2πc× 300 cm−1 =⇒ ωif = 20.6278× 1015 rad/s

and

ν2 = 20000− 300 = 19700 cm−1

Taking d = 1, this gives the scattering cross-section as

σR
gf = 7.03× 10−28 cm2



Chapter 8

Coherence

C
oherence arises when amplitudes add with a definite relative phase
and one observes a physical quantity proportional to the square of the

total amplitude. A familiar example is the addition of E fields to produce
an interference pattern in classical optics. In quantum optics a coherent
(linear) superposition of states with definite numbers of quanta is required
to produce a classical oscillating E field in one mode of the quantized field.
Coherence is also responsible for a number of interesting interference effects
present in scattering of atoms and molecules. In this case it is the quantum
mechanical amplitudes associated with different “trajectories” that scatter
to the same angle which add to give interference in the probability distri-
bution of the scattered particles.

In atomic physics, the term coherence is used for at least two distinctly
different physical phenomena—(i) those that occur in a single atom when
two states have a definite relative phase (which varies with time if the states
are not degenerate), and (ii) those that occur when there is more than one
atom radiating so that interference effects and coupling of the atoms become
important. Radiative coupling dominates when the atoms are localized
in a spatial region smaller than a wavelength of the radiation, whereas
interference and concomitant directional specificity become important for
larger samples.

In this chapter, we will study the effects of coherence in single atoms fol-
lowed by effects in ensembles—both localized and extended. In addition,
we will see different facets of coherent control—phenomena where the
properties of atoms can be modified using control lasers on auxiliary tran-
sitions, made possible by the fact that atoms are multilevel systems. To
be consistent with terminology in this field, we will use the terms “states”
and “levels” interchangeably—thus atoms are two-level, three-level, or mul-
tilevel.

235
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A. Coherence in single atoms

In this section, we treat coherence in single atoms. Here the coherence
results from the fact that the atom has been placed in a superposition
of its eigenstates so that the expectation values of certain operators (e.g.
the x component of polarization Px) exhibit interference structure. Such
structure may manifest itself as a time dependence in the expectation
value of these operators, or as difference in the steady-state processes (e.g.
anisotropy of radiation). We shall first consider quantum beats—a phe-
nomenon in which the radiation rate of an atom oscillates in time; and
then level crossing—a situation in which interference between two nearly
degenerates can modify the polarization and intensity of fluorescent light
from the system.
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1. Quantum beats

Let us now consider what happens when two neighboring states of an atomic
systems are excited coherently by a short pulse. “Short” pulse in this
context means shorter than π/ΔE of the two states, and since we want to
discuss the case when ΔE is larger than the natural linewidth, “short” also
means much less than the lifetime of the excited states (both presumed to
have lifetimes τ = 1/Γ). What happens will be monitored by the temporal
behavior of the fluorescent radiation of polarization ε̂2, given that the pulse
arrived at t = 0 with polarization ε̂1.

For a very short pulse Δt � 1/(ωig − ω1) the system has a state vector
at time t (using first-order perturbation theory, the dipole interaction, the
rotating wave approximation, and limiting E1 appropriately)

|t〉(1) = Δt

2�
E1

∑
i

M
(1)
ig |i〉

∝ E1

∑
i

M
(1)
ig e−iωit |i〉◦

where ωi = Ei/�− iΓ/2 and |i〉◦ is |i〉 at t = 0. The rate of radiation from

|t〉(1) to a state |g′〉 with the same parity as the ground state is proportional
to the square of the matrix element

R(t) ∝
∣∣∣〈g′|ε̂2 · �P |t〉(1)

∣∣∣2
∝ E2

1

∣∣∣∣∣∑
i

M
(2)
g′iM

(1)
ig e−iωit

∣∣∣∣∣
2

∝ I1

∣∣∣M (2)
g′aM

(1)
ag e−iωat +M

(2)
g′bM

(1)
bg e−iωbt

∣∣∣2
≡ I1

∣∣A21
g′ge

−iωat +B21
g′ge

−iωbt
∣∣2

where we have assumed that there are only two intermediate states, |a〉 and
|b〉.
Expanding this out gives

R(t) ∝ I1e
−Γt

[∣∣∣M (2)
g′aM

(1)
ag

∣∣∣2 + ∣∣∣M (2)
g′bM

(1)
bg

∣∣∣2] ← normal decay

+ I1e
−Γt 2Re

{
M

(2)∗

g′a M (1)∗

ag M
(2)
g′bM

(1)
bg e−i(ωb−ωa)t

}
← interference
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Defining Δω as ωb − ωa, this can be written as

R(t) ∝ I1e
−Γt

[∣∣∣M (2)
g′aM

(1)
ag

∣∣∣2 + ∣∣∣M (2)
g′bM

(1)
bg

∣∣∣2]
+ I1e

−Γt
[
Re

{
M

(2)∗

g′a M (1)∗

ag M
(2)
g′bM

(1)
bg

}
cos(Δω t)

− Im
{
M

(2)∗

ag′ M (1)∗

ga M
(2)
g′bM

(1)
bg

}
sin(Δω t)

] (8.1)

The point is that the observed fluorescence does not decay smoothly—there
are oscillations (beats) in the decay whose frequency is Δω. They can be
large enough to cause zeros in R(t).

Quantum beats in the decay fluorescence permit measurement of the energy
splitting Eb−Ea even though (in fact because) the spectrum of the exciting
light is too broad to resolve the states |a〉 and |b〉. It is thus well suited to
the measurement of closely spaced levels (in fact widely spaced levels give
trouble because the excitation and fluorescence electronics must be very
fast). Another advantage is that there is no first-order Doppler broadening
on ω (only on Δω). Furthermore, the method offers the possibility of mak-
ing subnatural linewidth measurements of Δω by following the oscillations
for several lifetimes.

It should be clear from the above derivation that the exact nature of the
excitation source is immaterial as long as it is short. Thus collisional ex-
citation should produce quantum beats if it can be pulsed (electrons, for
instance). The best examples of this (in fact the best examples of quan-
tum beats, period) are obtained using the beam foil techniques where fast-
moving atoms are excited by collisions with a thin foil and the quantum
beats are observed as a function of distance downstream from the foil. The
distance gives a good measurement of t because the velocity distribution
can be very narrow even downstream of the foil. A further advantage of
beam foil excitation is that the selection rules are not so restrictive as ra-
diative excitation (particularly if the foil is tilted with respect to the beam),
allowing more states to be excited coherently.

It should be stressed that the coherence that produces quantum beats is
only in the excited states |a〉 and |b〉. There is no interference between
different radiators, and it is not necessary to observe fluorescence from the
system back into its original level. Thus it might be possible to excite |a〉
and |b〉 using quadrupole radiation and observe beats from a spontaneous
dipole transition. In fact, it is not necessary to observe the beats using
fluorescence; quantum beats have been observed in absorption using a sec-
ond short pulse to excite |a〉 and |b〉 to a higher level whose population was
monitored.
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2. Level crossing

It might seem at first that there would be no interference in the fluorescence
of states |a〉 and |b〉 in the preceding situation if the exciting source remained
on continuously, even though it had a wide enough spectrum to excite both
states. This is not the case, however, when Δω becomes comparable to Γ
because then the excited atoms decay before they have a chance to get out
of phase. Thus coherence effects may be observable in situations where Δω
becomes small, for example near a value of magnetic field where the energies
Ea and Eb become degenerate. This situation is called a level crossing.

To determine the steady-state fluorescence observed near a level crossing,
we simply integrate R(t) out to t = ∞. [This produces the same result as
adding a new randomly distributed variable t◦ and considering the integral
of R(t − t◦) back to t◦ = −∞.] We keep only the oscillating terms in Eq.
(8.1). Since the signal is independent of the time of observation—remember
the source is a continuous light source—we omit the t as an argument of
the fluorescence rate R

R(2) ∝ I1

[∫ ∞

0

e−Γt Re
{
M

(2)∗

g′a M (1)∗

ag M
(2)
g′bM

(1)
bg

}
cos(Δω t) dt

+

∫ ∞

0

e−Γt Im
{
M

(2)∗

g′a M (1)∗

ag M
(2)
g′bM

(1)
bg

}
sin(Δω t) dt

]
which yields

R(2) ∝ I1 Re
{
M

(2)∗

g′a M (1)∗

ag M
(2)
g′bM

(1)
bg

} Γ

Γ2 + (Δω)2

+ I1 Im
{
M

(2)∗

g′a M (1)∗

ag M
(2)
g′bM

(1)
bg

} Δω

Γ2 + (Δω)2

Thus there are two components—a Lorentzian with FWHM of 2Γ, and a
dispersive curve. In general the matrix element is neither purely real nor
purely imaginary, and as a result the experimentally measured curve will
have to be fit with a sum of the two terms in the above equation.

It is worth noting that the FWHM of the curve 2Γ, in contrast to a FWHM
of Γ which one normally expects from resonance experiments on systems
with an excited state lifetime 1/Γ. This is because coherence in a normal
resonance experiment is a superposition of a ground and an excited state
whose amplitude decays like e−Γt/2, whereas coherence in a level crossing
experiment is due to superposition of two excited states and its amplitude
decays as e−Γt.

The first level crossing experiment was performed by Hanle in 1925, who
discovered that the resonance fluorescent light of a system had different
properties around zero magnetic field than at other values of the field. The
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first non-zero field level crossing experiment was not performed until 34
years later by Colegrove et al., who monitored the absorption rather than
the fluorescence. This experiment improved knowledge of the fine structure
of helium.

3. Double resonance

Looking over our discussion of level crossing, we note that it is basically
a resonance technique without an RF resonance field. The lineshape is
Lorentzian and occurs at a certain value of magnetic field, just as for an
RF-induced resonance if the RF frequency is fixed while the field is tuned
(as is generally done in NMR spectroscopy, for example). The method of
detection involves the pattern of fluorescence radiation rather than the RF
power absorbed, which makes the method much more sensitive (you get an
optical photon rather than an RF photon for each system “resonated”).

It is possible to use level crossing techniques in conjugation with RF fields—
the crossing signal produced by the RF occurs where the excited states are
spaced apart by an energy �ωRF. The technique of using changes in the
fluorescent light to detect when two (not necessarily excited) states are
coupled together by RF is called double resonance. When applied to the
ground state it is very similar to optical pumping in which the light produces
and monitors the populations of the ground state. Both optical pumping
and level crossing offer (in addition to the great sensitivity mentioned above)
a way to “tag” levels of a complicated system, simplifying the spectrum
obtained when sweeping the other frequency.
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B. Coherence in localized ensembles

In this section, we discuss effects which arise in localized ensembles be-
cause the coupling of the radiation to different members of the ensemble
is sensitive to their relative phase. Localized means closer together than
a wavelength, and this implies that retardation effects are unimportant so
that the radiation will not be strongly directional (but may, for example,
have the distribution characteristic of dipole or quadrupole radiation).

1. Superradiance

(i) Qualitative discussion

The previous section of this chapter dealt with coherence produced in single
atomic systems and involved superpositions of eigenstates with a definite
relative phase. Although this relative phase must have a non-zero expecta-
tion value for the ensemble of systems which are generally required to get
a detectable signal, there is no necessity to have a dense system in order
to observe the coherent effects. Now we consider systems where several
identical radiators are close to one another, and discuss the effects of this
neighborliness on the radiation of the system. Even in the absence of exter-
nal driving fields, spontaneously developed coherence of the radiators can
result in a marked departure of the radiation from a simple sum of intensi-
ties of the spontaneous radiation patterns of the individual systems—this
is called superradiance or superfluorescence.

Before discussing a system of specifically quantized radiators in detail, con-
sider a hypothetical pulsed type NMR experiment on a sample containing
N spin 1/2 systems. Imagine that a π/2 pulse of radiation is applied to the
system, which initially had all its spins in the lower energy state (say spins
along −z). This creates an oscillating magnetic moment in the sample

M ∼ NμB Re
{
ε̂+e

−iω◦t
}
e−t/T2N

where T2N is the inverse of the dephasing rate Γ2N for the N -spin system
(each with T2 type dephasing as discussed in Chapter 5, “Resonance”).

These spins constitute a coherent ensemble of radiators confined within
a region much smaller than a wavelength. They induce a voltage in the
pick-up coil of

V ∼ dM

dt
∼ NμBω◦ Re

{
ε̂+e

−iω◦t
}
e−t/T2N

where we have assumed that ω◦ 	 1/T2N .

Thus the power collected by the detector (which is roughly equal to V 2

divided by its impedance) is proportional to N2. Nothing seems strange
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about this—in NMR one realizes that the voltage is proportional to the
number of spins in the sample, whereas in a fluorescence experiment one
“knows” that the power is proportional to the number of atoms in the sam-
ple. One hardly thinks it unnatural that the spins in the NMR experiment
radiate coherently in response to the external stimulation pulse at t = 0.

Now consider what happens to the energy in the spin system. Pretend that
T2 arises solely from spontaneous radiative process, so that the total energy
radiated must be

Erad =

∫ ∞

0

R(t)dt = N�ω◦/2 (proportional to N)

(since 〈mz〉 = 0 after a π/2 pulse, the average spin energy is �ω◦/2).

On the other hand, it is clear from the above discussion that

RN = N2R1 (proportional to N2)

where RN is the power radiated by a system with N spins.

It is impossible to satisfy the above two equations simultaneously unless
the lifetime of the spontaneous radiation also depends on N . Thus if

T2N = T21/N and RN (t) = N2I◦e−t/T2N

then the total energy radiated will vary as N while the initial rate varies
as N2. This behavior is the hallmark of cooperative radiative processes
(although N is often less than the total number of available radiators).

(ii) For 2 two-level systems

Imagine thatN identical two-level systems are contained in a region of space
much smaller than λ, the wavelength of radiation which they emit. This
restriction means that the phase of the field is constant everywhere in the
sample so we do not have to worry about retarded times, etc. The systems
are not close enough to perturb each other—the only manifestation of the
symmetry restrictions on the overall wavefunction arises in the interaction
with the radiation field.

Such a situation was considered by Dicke in a seminal paper in 1954.∗ To
dramatize the effects of coherence, he first considered the case of 2 spin 1/2
particles (neutrons) in a magnetic field. One neutron in its higher energy
state will decay spontaneously (type M1) with time constant T21, if it is
placed in a small box alone (the box is for localizing the particle only and
does not interfere with the radiation). If a second neutron in its lower

∗R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110
(1954).
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energy state is already in the box, then when the excited state neutron is
added, the system is in an equal superposition of singlet |s = 0,ms = 0〉
and triplet |s = 1,ms = 0〉 states. Hence there is a probability of 1/2 that
the two neutrons are in a subradiant state (the singlet) and a probability of
1/2 that they are in superradiant state (the triplet). The triplet component
decays to the ground state |s = 1,ms = −1〉 twice as fast as the lone neutron
system, but the singlet component cannot decay to the triplet ground state
(via M1) and remains there forever. Hence the radiation rate at t = 0 is not
altered by the presence of the extra spin down neutron. However, the total
energy is only 1/2 that for the lone neutron, so the radiation rate must decay
twice as fast as for a single neutron. This discussion may be applied to any
type of two-level systems (and Dicke gives such a semiclassical treatment).

(iii) For N two-level systems

Dicke then gives a general discussion of the coherent radiative behavior of
a system of N two-level systems. We shall consider these systems to be
spin 1/2 systems in a magnetic field∗ since then his cooperation operators
become familiar angular momentum operators

Total angular momentum: �R =
∑ �Si

Eigenvalue of �R2: r(r + 1) ≤ N

2

(
N

2
+ 1

)
z component of �R: m =

∑
mi =

1

2
(n+ − n−) ≤ r

(8.2)

where n+ is the number of up spins, and n− is the number of down spins.

Using this formalism Dicke shows that the dipole matrix element governing
interaction with the field (and raising m from m− 1 to m) is proportional
to

√
(r +m)(r −m+ 1) so that the intensity is

I = I1(r +m)(r −m+ 1)

where I1 is the rate for a single system.

This is largest when r is big (e.q. the spins all line up) and m is small
(i.e. the total spin precesses in the xy plane). In this case I ∝ N2I1 in
accord with our earlier qualitative discussion. When r is big (r = N/2)
and m is big (m = r) the rate is I = NI◦, i.e. just what you expect from
N independent radiators. When r is small (it can be 1/2 if N is odd, 0
if N is even), then I ≈ I1 if N is odd and 0 if N is even—the system is
subradiant (radiates less rapidly than N independent systems). Dicke also
points out that the rate of stimulated emission/absorption is not enhanced
by N2, but only by N , even in the state with r = N/2.

∗Remember any two-level system is analogous to a spin 1/2 system in a magnetic field—
from the Feynman–Vernon–Hellwarth theorem discussed in Chapter 5, “Resonance.”
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Dicke suggests two ways to produce a superradiant system with r ≈ N/2
and m ≈ 0. One is to put the system in its ground state (say by cooling it
so kBT � E+ − E−) whereupon it is in the state |r = N/2,m = −r〉, and
then to give it a π/2 pulse, raising m to ≈ 0. The second way is to put
the system in a state |r = N/2,m = +r〉 (this corresponds to a state with
every system in its upper level and might be achieved by optical pumping)
and then wait. At first the system will decay with an intensity I = NI1—
i.e. independently. The decay will be via Δm = −1,Δr = 0 transitions,
however, so that the system will radiate faster and faster until m ≈ 0. At
this point the intensity will be (for a short time) a factor ∼ N/2 larger—if
N is large this can be dramatic.

In conclusion we stress the simple physical picture involved in superradiance
and its relationship to the concept of coherence, illustrating the discussion
by considering N spins. Remember that when a single spin is not purely up
or down, it has a non-zero expectation value for its x or y spin projection,
which is related to the relative phase of the coefficients a and b of the spin
up and down states—this can be seen by noting that the Sx and Sy spin
matrices have only off-diagonal elements, implying that 〈Sx〉 involves terms
like a∗b or b∗a (i.e. the off-diagonal elements of the density matrix). In a
localized ensemble of such spins the radiation field depends on the total
Sx and Sy which involve the off-diagonal matrix elements of the (ensemble
averaged) density matrix. If the spins are in phase—coherent—then the
radiation rate varies as N2. If they are out of phase there is a reduced total
Sx and Sy and the radiation rate is smaller—in fact it can vanish if the
spins are suitably arranged. Large Sx and Sy total moments are associated
with values of s ≈ N/2 and m ≈ 0, and can be produced from states
with large s and m ≈ ±s by π/2 pulses of radiation. Alternatively, they
will evolve spontaneously if the system has large s and m corresponding to
the higher energy level of the spins. The central idea of superradiance is
that spontaneous radiation, which is a spontaneous (i.e. self-induced) and
random process for a single atom, can be a coherent process for a localized
ensemble of atoms.

2. Spin echoes

In the preceding section we discussed the radiation fromN identical systems.
In real life the system, while truly identical, may have slightly different res-
onant frequencies due to physical effects such as local field inhomogeneities
or Doppler broadening. Such broadening is referred to as inhomogeneous
(which we will see more about in Chapter 9, “Lineshapes”) because it is
not the same for all members of the ensemble—it will cause a coherently
radiating ensemble to become incoherent. The reduction of 〈Sx〉 and 〈Sy〉
due to this is reflected in a small value of T2, the phenomenological decay
time of the off-diagonal elements of the density matrix. Echo phenomena
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is general, and spin echoes in particular, arise when the inhomogeneous
broadening results in a rephasing of the dephased radiators. Obviously
this situation will not occur by itself—in general a coherent oscillating mo-
ment is produced (e.g. with a π/2 pulse), which then decays due to rapid
inhomogeneous processes. A second pulse (or pulses) is then applied, which
reverses the relative phase of the dephased radiators so that the inhomoge-
neous broadening brings the system back into coherence at a later time.

The easiest spin echo to understand is the one produced in a two-state
system whose population vector �r is initially �r = ẑ (the system is in the
lower state). At t = 0 this system is subject to a π/2 pulse of resonance
radiation so that �r (which we shall hereafter call a “spin”) is shifted into
the xy plane where it decays at a rate Γ2 = 1/T2 due to dephasing of the
spins of the individual systems. At t = T , a π pulse is applied to the system.
This reverses the relative phases of the individual spins and as a result they
will rephase (or be in phase again) at t = 2T .

The crucial step in the echo process is the π pulse. Say that a particular
spin i has a resonance frequency ωi = ω◦ + δi (δi is small; the variation in
δi is roughly the inverse of the coherence decay time T2). If the π/2 pulse
is phased so that the angle in the xy plane is φ = 0 at t = 0, then the ith

spin will be at φi(T−) = ωiT just before the π pulse is applied. Assume
that this pulse has its �ω vector along the arbitrary angle φT so that it does
not change the direction of a spin with phase φi(T−) = φT . If φi �= φT then
the spin will precess 180◦ about �ω in the rotating frame and will wind up
at an angle

φi(T+) = φT − [φi(T−)− φT ] = 2φT − ωiT

For t > T its phase will be (since it continues to precess at ωi)

φi(t > T ) = φi(T+) + ωi(t− T )

= 2φT + ωi(t− 2T )

It is clear that at t = 2T , the phase φi = 2φT independent of the value of
ωi! All the spins will be in phase again at this time and the system will
radiate coherently.
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The pulse sequence, radiated field, and the spins are shown in Fig. 8.1
below.

Figure 8.1: Spin echo scheme showing the pulse sequence, radiated field,
and the spins at different times.

As seen, the amplitude of the echo signal is reduced because not all of the T2-
type damping is inhomogeneous—some is homogeneous (e.g. spontaneous
decay) and some comes from energy loss (T1) processes. In addition, the
figure shows that the width of the pulse affects the time of the echo slightly
by taking the t = 0 point inside the pulse.

While echos are very dramatic coherent phenomena, the diehard spectro-
scopist will note that they are not very useful as a spectroscopic tool since
all information about the central frequency ω◦ is lost. Even if the phase
of the echo is somehow measured, it is simply 2φT —independent of the
frequency.
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C. Coherence in extended ensembles

When an ensemble of atomic systems whose dimensions are large com-
pared with a wavelength interacts with radiation, the phase of the radi-
ation (whether emitted or absorbed) varies throughout the ensemble, and
the phase of the polarization of the system varies from place to place in
consequence. If the radiators interfere to produce radiation propagating in
a given direction, then the relative phase of the radiators must reflect the
phase of this traveling wave, and the radiators will not be phased correctly
to produce radiation traveling in some direction. When the polarizations
of the radiators are phased so as to optimally produce a wave, they are said
to be phase matched. In this section, we shall derive the expression for
phase matching in multi-photon processes, discuss the effects of imperfect
phase matching, and then give some examples of how it may be achieved
in practice.

1. Phase matching

Let us consider an ensemble of radiators that absorb radiation of wave vec-
tor �k1 and emit radiation with wave �k2. The direction k̂1 is determined by
the incident radiation, but the direction k̂2 must be regarded as a variable.
In general the length of �k2 is fixed by the relationship

k2 = n(ω2)ω2/c (8.3)

where n(ω2) is the index of refraction of the medium at the frequency of
the emitted radiation ω2, which in turn will be determined by the equation
of energy conservation

ω1 ± ω2 ± · · · ± ωn+1 = 0 (8.4)

or else by the level scheme of the atoms.

We now seek to calculate the phase of the radiation that arrives at a planar
detector perpendicular to k̂2 relative to the phase of the initial wave at the
source. (A planar detector might consist of a lens that focuses plane waves

traveling along k̂2 onto a small detector.) The detected intensity will, of
course, be maximum when the phase φi of radiation arriving at the detector
from an atom at �ri is independent of �ri so that the effect of all the atoms
add coherently. We shall make our calculation of φi independent of this
consideration.
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The situation under discussion is shown in Fig. 8.2 below.

Figure 8.2: Scheme for phase matching, showing source, detector, and
atom i.

In general, each traveling wave has the form ei(
	k·	r−ωt), with k and ω related

as in Eq. (8.3). We now calculate the phase of the radiation received at the
detector plane. It is a sum of two parts

From source to atom i: φsa = �k1 · (�ri − �rs)

From atom to detector: φad = �k2 · (�rd − �ri)
(8.5)

Hence the total phase for the ith atom is

φi = �ri ·
(
�k1 − �k2

)
(we dropped the terms depending on �rs and �rd because they are the same
for all atoms in the ensemble and it is the relative phase that is most
interesting).

For a multi-photon process the phase becomes

φi = �ri ·
(
�k1 ± �k2 ± · · · ± �kn+1

)
≡ �ri ·Δ�k

where the signs are the same as in Eq. (8.4), and Δ�k is defined convention-
ally as

Δ�k = �k1 ± �k2 ± · · · ± �kn+1 (8.6)
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Perfect phase matching occurs when Δ�k = 0, in which case all φi’s are
the same. Then the radiators interfere constructively, and the detected
intensity will be maximum in the direction k̂n+1 for which Δ�k = 0.

2. Intensity for finite mismatch

Sometimes it is not possible to achieve perfect phase matching. For instance,
if n(ω) is not constant, then the fact that Eq. (8.4) is satisfied for the

ωi means that Δ�k in Eq. (8.6) will not in general be zero for a collinear
arrangement of the beams. If an attempt is made to go to a non-collinear
arangement of the beams �k1 . . . �kn, then a slight misalignment will make
it impossible for the system to find a direction for �kn+1 in which Δ�k = 0.

(Once a signal is found, the �k1 . . . �kn beams can be adjusted to minimize

Δ�k).

The length of �kn+1 is determined by ωn+1 and the index of refraction of

the ensemble. For collinear beams, the minimum for Δ�k will therefore
be produced for �kn+1 parallel to

∑n
i=1

�ki and Δ�k will also be parallel to∑n
i=1

�ki. If the system extends a distance L in this direction the field
produced at the detector will be given by

Ed = nRe

{∫ L

0

dz

∫∫
dx dy eiφ(	r)

}

where n is the number density of radiators in the ensemble, the z axis has
been chosen along Δ�k, and φi has been replaced by φ(�r) = �r ·Δ�k = zΔk.

Defining N as the total number of radiators in the system, this yields

Ed = N Re

{
1

L

∫ L

0

dz eiΔk z

}

= N Re

{
eiΔk L − 1

iΔk L

}

= N
sin(Δk L)

Δk L

Thus the total intensity will contain the factor

I ∼ N2

[
sinΔk L

Δk L

]2
(8.7)

which is characteristic of diffraction of radiation from a one-dimensional slit
(in which case Δk L is replaced by 2πL sin θ/λ).
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In this and in the preceding section we have assumed an isotropic medium
in which n depends only on ω. In a crystal n can also depend on the relative
orientation of the crystal lattice and the polarization of the E field. Thus it
may become possible to obtain Δ�k = 0 by changing the angle of the crystal
while holding the directions of �ki fixed—this is called angle tuning.

3. Examples

(i) Degenerate four-wave mixing

It is possible to observe intense signals generated by four-wave mixing in a
two-state system in which all four ω’s are the same (degenerate) but their

directions differ. The relevant ωi’s and the �ki’s are shown in Fig. 8.3 below.

Figure 8.3: Energy level structure for degenerate four-wave mixing, show-
ing the relevant ωi’s and the �ki’s.

ω4 is shown dashed to indicate that it is generated by the system rather
than imposed from without. The arrows on the �ki’s are placed to indicate
whether the system absorbs or emits the radiation.

The relation

ω1 − ω2 + ω3 − ω4 = 0

is trivially satisfied in this case, and Δ�k = 0 simply implies that �k4 will
be opposite to �k2 if �k1 and �k3 are anti-parallel. Non-coplanar geometries
which satisfy Δ�k = 0 also exist.
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(ii) Generation of UV radiation

Coherent ultraviolet radiation can be generated by four-wave mixing pro-
cesses in atomic vapors which satisfy

ω1 + ω2 + ω3 − ω4 = 0

The efficiency of the process is obviously enhanced by the presence of near-
resonant states, as seen from the level structure shown in Fig. 8.4 below.

Figure 8.4: Energy level structure for generating ultraviolet radiation.

Frequently ω2 = ωca −ω1 and level |c〉 is excited by a resonant two-photon
process. Sometimes level |d〉 is not a bound level, but is in the one-electron
continuum.

Several schemes for phase matching have been tried, since this is obviously
essential if highly efficient UV generation is desired. Since collinear ar-
rangement of the beams provides the greatest overlap of the focused beams
necessary for high power generation, phase matching by changing the angles
of the �ki is not desirable. One alternative is to introduce a second atomic
species into the system (in addition to the atoms used for the four-wave

process) whose refractive index varies in such a way as to make Δ�k = 0.
Another scheme is to exploit the fact that the index of refraction of the
primary atomic gas changes rapidly near a resonance and to choose the
three frequencies ω1, ω2, and ω3 so that the index matching condition is
satisfied.
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D. Mixed examples

In this section we consider several examples in that the coherent behavior
of an ensemble involves ideas that we have discussed in earlier sections of
this chapter. We consider echos in two and three level systems first, and
conclude with a discussion of superradiance in samples whose dimensions
are 	 λ, the wavelength of the radiation emitted.

1. Echoes in extended media

(i) Spin echo in an extended sample

Now we consider the possibility of observing a spin echo in an extended
inhomogeneously broadened medium such as a crystal. We let �k1, �k2, and
�k3 be propagation directions of the π/2 pulse, the π pulse, and the echo re-
spectively. Generalizing the treatment of Section B2 simply involves adding
in the appropriate phase factors �k1 · �ri. Using the same notation for time
as before one has

φi(T−) = �k1 · �ri − (ω◦ + δi)T

(The − sign arises because we now define φ as the phase from �k · �ri − ωit
instead of simply ωi as before).

In an extended sample the phase of the π pulse depends on �ri—we can take
account of this by setting the phase of the π pulse to be φT = �k2 ·�ri. Then

φi(t > T ) = 2φT − φi(T−) + ωi(t− T )

= 2�k2 · �ri − φi(T−)− (ω◦ + δi)(t− T )

= (2�k2 − �k1) · �ri − (ω◦ + δi)(t− 2T )

For an echo pulse emitted in the direction �r3, the phase is (remember emis-

sion means the phase is −�k3 · �ri)

φi(t > T ) = (2�k2 − �k1 − �k3) · �ri + (ω◦ + δi)(2T − t)

In order to get an echo one must have φi become independent of i for some
time. It is clear that at the time techo = 2T , the effects of inhomogeneous
broadening (i.e. those involving δi) will vanish just as they did for the small
sample. In an extended sample, however, one must also satisfy the phase
matching condition that

Δ�k = �k1 + �k3 − 2�k2 = 0
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Since ω1 = ω2 = ω3, this phase matching condition is difficult to satisfy
except in the case that �k1 and �k2 are inclined relative to each other at a
small angle α so that

|Δ�k| ≈ α2|�k|

If α is a few milliradians it is possible to keep the intensity factor in Eq.
(8.7) close to unity for sample sizes ∼1 cm and still benefit from the spatial
separation of the echo pulse from the exciting pulses.

(ii) Echoes in multilevel atoms

The idea of engineering an echo by a suitable sequence of pulses to a system
is not limited to a two-state system. Recall that for a two-state system, an
echo occurred whenever the radiators rephased themselves at some later
time (and with some definite spatial pattern if the ensemble were an ex-
tended one). If the atomic systems have several levels, then an echo can
result whenever the relative phase of any two states connected by an al-
lowed transition is rephased throughout the ensemble. The presence of
additional levels therefore offers more flexibility in generating an echo be-
cause a coherence produced between two states can be transferred to other
levels (where it evolves with a different frequency) and then back to the
original states.

2. Strong superradiance in extended samples

Dicke’s comment in the superradiance paper∗ states that “A classical sys-
tem of simple harmonic oscillators distributed over a large region of space
can be so phased relative to each other that coherent radiation is obtained
in a particular direction. It might be expected also that the radiating gas
under consideration would have energy levels such that spontaneous radi-
ation occurs coherently in one direction.” One might also expect some
complications since the system would not “know” which way to radiate
(unless given a π/2 pulse), and Doppler broadening may also be a problem.

The restriction to a region � λ had the subtle effect of suppressing Doppler
broadening since a system with large enough speed to cause a frequency shift
outside the radiation width (1/T2N) would hit the walls and bounce back
before radiating. In a real extended sample some form of inhomogeneous
broadening will occur and greatly complicate the superradiance problem
by making the number of subsystems capable of superradiating dependent
on the superradiant decay time. We circumvent this difficulty by consid-
ering only strong superradiance, which means that the big bang portion

∗See footnote on p. 242 for complete reference.
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of the superradiant process happens fast enough to interact with all the
subsystems (i.e. 1/T2N > Doppler width).

Now consider an extended sample of area A and length L. How must we
restrict the direction of superradiant emission so that all the subsystems can
participate? We must have the angle within the forward 1-slit diffraction
pattern characteristic of a slit of width A1/2. Such superradiance can occur
only in a cone of solid angle

ΔΣ ≈ θ2diff ≈
(
λ

D

)2

=
λ2

A

Thus instead of finding a superradiant emission power

P = N2P◦ (P◦ is for one system)

for this extended system, this rate is multiplied by f ≡ ΔΣ/4π, the geo-
metric fraction of solid angle into which superradiant emission can occur
coherently. Thus we get

P = fN2P◦

for the radiation rate. This will radiate the total energy (= NP◦T21) away
in a superradiant time

TSR =
NP◦T21

P
=

T21

Nf
=

TSP

Neff

where TSP is the spontaneous decay time of a single radiator and

Neff = fN =
λ2

4πA
nAL =

λ2L

4π
n = πλ̄2Ln

i.e. is the number of subsystems within a cylinder of radius λ̄ and length L.
More detailed calculations show Neff to be 1/2 as big as the above equation
indicates.

Superradiance in two atom systems has been known for a long time—a
homonuclear molecule has gerade and ungerade states one of which is
subradiant and the other which radiates at ∼two times the rate of the
free atom if the molecule is weakly bound (so that both the dipole matrix
element and the emission frequency are not appreciably changed).
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E. Coherent control in multilevel atoms

1. Coherent population trapping — CPT

Coherent population trapping is a phenomenon in which atoms are driven
into a coherent superposition state from which they cannot absorb light.
Coherence arises because the amplitudes for absorption from the dark state
for the two laser beams cancel to create a non-absorbing state. This shows
that the two laser beams have to be phase coherent.

Figure 8.5: Energy level structure for observing CPT.

The creation of the dark state can be understood by considering the three-
level Λ system shown in Fig. 8.5. There are two electric dipole allowed
transitions, namely |g1〉 → |e〉 and |g2〉 → |e〉. These are coupled by two
phase coherent lasers with respective Rabi frequencies of ωR1 and ωR2. The
lasers are detuned by an equal amount δe from the upper level |e〉. They
have a relative detuning of δ12− δR, where δ12 is the difference in frequency
between |g1〉 and |g2〉, and δR is the Raman detuning from the two-photon
resonance coupling |g1〉 and |g2〉 through an intermediate level near |e〉.
Thus the CPT resonance occurs as δR is scanned at the point δR = 0, while
|e〉 plays the role of a “stepping stone” for the process. In fact, the larger
the detuning from this level the better for the coherence of the process since
the possibility of spontaneous decay due to real transitions to |e〉 is reduced,
but this comes at the price of reduced signal.

The underlying physics of the CPT phenomenon can be understood most
easily when the atomic system is expressed in a different basis. Instead of
the energy eigenstates |g1〉 and |g2〉, we consider the linear combination |+〉
and |−〉 given by

|+〉 = ω∗
R1 |g1〉+ ω∗

R2 |g2〉√
|ωR1|2 + |ωR2|2

|−〉 = ωR2 |g1〉 − ωR1 |g2〉√
|ωR1|2 + |ωR2|2
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Since these states are not energy eigenstates, they evolve with time. In the
rotating wave approximation, and when the light fields satisfy the Raman
resonance condition (δR = 0) with no phase difference, transitions starting
from |−〉 are not allowed, i.e.

〈e|H int
E1|−〉 = 0

|−〉 is therefore called a coherent dark state. Atomic population is driven
into the dark state by optical pumping and gets trapped in the state; thus
the process is called coherent population trapping. The zero absorption
from this state is due to the destructive interference of the transition am-
plitudes along the two possible excitation pathways to level |e〉.
The above analysis shows that the linewidth of the CPT resonance is limited
by the decoherence rate between the two ground levels. CPT is usually
studied in alkali atoms with the two lower levels formed by the two ground
hyperfine levels. Thus the transition between |g1〉 and |g2〉 is E1 forbidden,
and the lifetime-limited linewidth is below 1 Hz. However, when CPT
is studied in vapor cells, the ground state coherence can be destroyed by
spin-exchange collisions with the walls. To reduce this effect, CPT studies
normally use vapor cells with paraffin coating on the walls, or cells that are
filled with a buffer gas like N2 or Ne.

CPT in vapor cells has several applications in precision spectroscopy, such
as sensitive magnetometry and atomic clocks. For magnetometry, the basic
principle is that the CPT resonance gets split into several components in the
presence of a magnetic field. The amount of shift depends on the Zeeman
shift of the sublevels involved, and hence can be used to determine the
strength of the B field. One gets high sensitivity because the linewidths of
the resonances is very small, and even a small field can cause a well resolved
shift. For use as atomic clocks, recall that the CPT resonance occurs when
the frequency difference between the two laser beams is exactly equal to
the ground hyperfine interval. Since the SI unit of 1 second is defined in
terms of the ground hyperfine level in 133Cs, the phenomenon naturally
lends itself to the realization of an atomic clock using Cs in a vapor cell.
Even with Rb where the interval is different, the CPT resonance can be
used to realize a secondary time standard.
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2. Electromagnetically induced transparency — EIT

Electromagnetically induced transparency is a phenomenon in which a
strong control laser is used to modify the properties of the medium for
a weak probe laser. In the simplest manifestation of EIT, we take the
medium to be composed of three-level atoms, so that the control and probe
lasers can act on different transitions. Applications of EIT include slowing
and storage of light, lasing without inversion, enhanced non-linear optics,
and high resolution spectroscopy.

EIT occurs due to two effects caused by the control laser—(i) creation
of dressed states, and (ii) interference between the decay pathways to (or
from) these dressed states—both of which will be discussed in the following
sections. We will study the phenomenon of EIT in the three canonical types
of three-level atoms—lambda (Λ), ladder (Ξ), and vee (V). To facilitate a
density matrix analysis consistent in all the systems, we define the three
atomic levels as |1〉 , |2〉, and |3〉. The probe laser is on the |1〉 → |2〉
transition with Rabi frequency ωRp and detuning δp ≡ ωp − |ω21|. The
control laser is on the |2〉 → |3〉 transition with Rabi frequency ωRc and
detuning δc ≡ ωc − |ω32|. Both these transitions are electric dipole allowed,
which means that the levels involved have opposite parity. Thus the levels
|1〉 and |3〉 have the same parity, and transition between them is electric
dipole forbidden. The respective spontaneous decay rates are Γ1, Γ2, and
Γ3. For simplicity, we will take all ground-like levels to have zero decay
rate, and all excited states to have the same decay rate of Γ. In the density
matrix analysis, control induced susceptibility for the probe transition is
given by the density matrix element ρ12.
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3. EIT in a Λ system

We first consider a Λ system with level structure as shown in Fig. 8.6(a).
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Figure 8.6: EIT in a Λ system. (a) Level structure. (b) Probe absorption
calculated from Im{ρ12Γ/ωRp} as a function of probe detuning, with
ωRc = 2Γ and δc = 0.

The density matrix elements (in the rotating wave approximation) obey the
following equations:

ρ̇11 =
Γ2

2
ρ22 +

i

2
(ωRpρ12 − ωRpρ21)

ρ̇22 = −Γ2ρ22 +
i

2
(ωRpρ21 − ωRpρ12) +

i

2
(ωRcρ23 − ωRcρ32)

ρ̇33 =
Γ2

2
ρ22 +

i

2
(ωRcρ32 − ωRcρ23)

ρ̇12 =

(
−Γ2

2
− iδp

)
ρ12 +

i

2
ωRp (ρ11 − ρ22) +

i

2
ωRcρ13

ρ̇13 = −i(δp − δc)ρ13 +
i

2
(ωRcρ12 − ωRpρ23)

ρ̇23 =

(
−Γ2

2
+ iδc

)
ρ23 +

i

2
ωRc (ρ22 − ρ33)− i

2
ωRpρ13

[Note that there are only six equations for the nine elements since the off-
diagonal elements are complex conjugates of each other.]

These equations are solved in the weak probe limit (i.e. neglecting higher
powers of ωRp), and in steady state (i.e. all the LHSs are 0). Since probe
absorption is given by Im{ρ12Γ/ωRp}, the relevant density matrix element
is ρ12. Specializing to the case of δc = 0 (control laser on resonance), the
steady-state solution yields

ρ12 =
iωRp/2

Γ/2 + iδp − i
ω2
Rc/4

δp

(8.8)



Coherent control in multilevel atoms 259

The poles of the above equation give the location of the dressed states (in
terms of probe detuning) as

δp± = ±ωRc

2

Thus probe absorption as a function of probe detuning will show two peaks
at these locations—called an Autler–Townes doublet. This is seen in
Fig. 8.6(b), where we show a plot of Im{ρ12Γ/ωRp} vs δp. The figure shows
that there is a minimum in probe absorption at line center because the
absorption peaks move to the locations of the dressed states created by the
control laser—thus the transparency induced by the control laser is called
electromagnetically induced transparency.

In order to get the linewidths of the two subpeaks, note that the control
laser couples the |2〉 and |3〉 levels, so the linewidth of each dressed state is

Γ± =
Γ2 + Γ3

2

The probe laser measures absorption to these dressed states from level |1〉,
hence the linewidth of each subpeak in the doublet is

Γp± = Γ1 +
Γ2 + Γ3

2
(8.9)

In the Λ system, Γ1 = Γ3 = 0 and Γ2 = Γ, and the subpeak linewidths are

ΓΛ
p± =

Γ

2

Thus probe absorption splits into two peaks each with a linewidth of half
the original linewidth, exactly as seen in the figure.
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4. Role of dressed state interference in EIT

The above discussion of the linewidth ignores any interference between the
two dressed states. When we take that into account, it results in probe
absorption decreasing due to destructive interference. The effect of the
interference is seen from the results of the calculations shown in Fig. 8.7.
The solid line represents the complete density matrix calculation, while the
dotted lines represent what the spectrum would look like with just the two
dressed states located at ±ωRc with linewidth Γ/2, and no interference.
The spectra are normalized so that the maximum absorption is unity. The
figure shows that interference causes the transparency dip to increase and
become zero at line center. The effect is significant up to about ωRc = 3Γ,
and then its effect becomes small because of the increased dressed state
separation.

Thus EIT in a Λ system is explained by a combination of the AC Stark
shift caused by the control laser and the interference of the decay pathways
from the dressed states. As we will see later, dressed state interference is
not so important in Ξ and V systems.
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Figure 8.7: Dressed state interference in EIT in a Λ system. “With
interference” represents the results of a complete density matrix calcu-
lation, whereas “No interference” shows the results of calculation with
two Lorentzians at ±ωRc having linewidth Γ/2 (representing the dressed
states).
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5. EIT vs. CPT

The physics underlying the two phenomena are related, particularly when
EIT is studied in a Λ system. For example, the Λ system with two ground
levels allows the formation of a perfect dark state, which is required for
CPT to occur and shows up in EIT as dressed state interference. But there
are also important differences between the two—the aim of this section
is to highlight these differences. Many of these points have already been
mentioned in the sections discussing CPT and EIT, but are repeated here
for ease of comparison. The differences in terms of various experimental
parameters are as follows:

(i) Phase coherence. The primary requirement for CPT experiments
is that the two lasers are phase coherent. When used in clock ap-
plications, one way to achieve this is to beat the two outputs on a
sufficiently fast photodiode, and then phase lock the beat signal us-
ing an RF oscillator. Alternately, the two beams are derived from
the same laser (so that they are phase coherent by definition), and
the required frequency difference is obtained using an electro-optic
modulator (EOM). In contrast, the control and probe lasers in EIT
experiments are usually independent since there is no requirement for
phase coherence.

(ii) Scan axis. The above discussion of phase coherence tells us that
the scan axes in the two cases are different. In CPT, the scan axis
is the relative detuning between the two beams, while in EIT it is
the frequency of the (phase-independent) probe laser. If the probe
transition is in the optical regime, this frequency is of order 1015 Hz,
whereas the CPT frequency is of order 109 Hz (6 orders of magnitude
smaller).

(iii) Natural linewidth. The difference of the scan axes in the two cases
brings up the question of what defines the natural linewidth for the
resonance. In CPT experiments, the resonance occurs when the rela-
tive detuning between the two beams matches the difference frequency
between the two ground levels—δ12 in Fig. 8.5. The relevant natu-
ral linewidth is therefore the linewidth of transition between the two
ground levels, which is sub-Hz because the transition is electric-dipole
forbidden. The linewidth of the upper level is not relevant. For exam-
ple, the CPT resonance can be used to create an atomic clock using a
Cs vapor cell with the two laser beams tuned to the D2 line of Cs. But
the 5 MHz linewidth of the upper level does not enter the picture—a
resonance with a linewidth of 100 Hz (which has been observed) would
not be called subnatural. This discussion shows that, in general, the
CPT phenomenon can only be used for precision spectroscopy on the
ground levels.
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On the other hand, the EIT phenomenon can be used for high-resolution
spectroscopy of the upper level. This is because the probe beam cou-
ples to the upper level. Its scan axis is the frequency of the probe
beam, and the relevant natural linewidth is the linewidth of the up-
per level. In the case of the Rb D2 line used in many EIT studies, the
upper level has a linewidth of 6 MHz. Therefore any feature that is
narrower than 6 MHz would be called subnatural.

(iv) Power in the two beams. In CPT both beams play an equally
important role, while EIT is studied in the regime where the control is
strong and the probe is weak. This leads to an important difference—
the powers (and hence intensity) in the two beams are roughly equal
for CPT, while the power in the probe beam in EIT is negligibly small.
This also has implications for the theoretical density matrix analysis in
the two cases. EIT is analyzed under the approximation of neglecting
higher-order terms in the probe intensity, whereas this approximation
in not valid for CPT. In addition, the quantity of interest in EIT is ρ12
which corresponds to the coherence between levels |1〉 and |2〉, while
in CPT it is ρ22 which gives the population in the upper state.

(v) Fluorescence versus absorption. One important consequence of
the fact that CPT results from the creation of a dark state is that there
is a concomitant decrease in the fluorescence from the cell. In fact the
first observation of CPT was the appearance of a dark region in the
fluorescence in a Na vapor cell, with an inhomogeneous magnetic field
applied so that the dark state was only formed in a localized region.
By contrast, in EIT the strong laser is always being absorbed (and
the atoms are fluorescing), and the induced transparency is seen only
in the absorption signal of the weak probe laser. Therefore, (to first
order) there is no change in the fluorescence whether the probe laser
is on or off.

(vi) Effect of buffer gas. Because CPT is a ground-state coherence
phenomenon, any technique that increases the coherence time will
give a narrower linewidth. One of the common methods is to use a
buffer gas in the vapor cell—typically a few torr of a gas like Ne or N2.
For example, when CPT resonances are used for clock applications,
the vapor cell is filled with buffer gas. On the other hand, the use of
such cells for EIT experiments actually kills the signal. This is because
the presence of the buffer gas broadens the probe absorption signal
due to collisions and prevents the observation of any modification due
to the control laser.

(vii) Effect of detuning from the upper level. Real transitions to the
upper level in CPT cause decoherence of the dark state because of
spontaneous decay. Therefore detuning from the upper level (increas-
ing δe in Fig. 8.5) results in the linewidth of the resonance becom-
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ing smaller. Of course, there is a simultaneous reduction in signal
strength, but this can be compensated by increasing the power in the
two laser beams. Note that the CPT resonance still occurs at the same
relative detuning between the two beams—δR = 0, the point at which
the two-photon Raman resonance condition is satisfied. In addition,
there is no change in the lineshape. Thus many CPT experiments are
done with a detuning of several linewidths from the excited state. On
the other hand, detuning the control laser from the upper level in EIT
(δc �= 0) causes the resonance to shift within the absorption profile of
the probe laser (appear at a different location), and also makes the
lineshape very different.



Coherent control in multilevel atoms 265

6. EIT in a Ξ system

We now consider the Ξ system with level structure as shown in Fig. 8.8(a).

Figure 8.8: EIT in a Ξ system. (a) Level structure. (b) Probe absorption
calculated from Im{ρ12Γ/ωRp} as a function of probe detuning, with
ωRc = 2Γ and δc = 0.

The steady-state value of ρ12 with δc = 0, obtained from a similar density
matrix analysis as was done for the Λ system, is

ρ12 =
iωRp/2

Γ/2 + iδp +
ω2
Rc/4

Γ/2 + iδp

(8.10)

The pole structure of the denominator shows that again the dressed states
are located at ±ωRc/2. In this case, Γ1 = 0 and Γ2 = Γ3 = Γ. Eq. (8.9)
tells us that the subpeak linewidths are

ΓΞ
p± = Γ

Probe absorption as calculated from Im{ρ12Γ/ωRp} with ωRc = 2Γ is shown
in Fig. 8.8(b). As seen, the spectrum splits into two with a transparency
dip at line center. Each subpeak has a linewidth of Γ as discussed above.
But in this case, the absorption at line center does not go to zero as in the
Λ case, and the maximum absorption is less than unity. More interestingly,
dressed state interference does not play a role, which can be verified by
doing calculations with and without interference as done for the Λ system.
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7. EIT in a V system

We now consider the V system with level structure as shown in Fig. 8.9(a).

Figure 8.9: EIT in a V system. (a) Level structure. (b) Probe absorption
calculated from Im{ρ21Γ/ωRp} as a function of probe detuning, with
ωRc = 2Γ and δc = 0.

In this system, level |1〉 is above level |2〉; therefore the relevant matrix
element for probe absorption is ρ21. The steady-state value of ρ21 with
δc = 0, obtained from a similar density matrix analysis as was done for the
Λ system, is

ρ21 =

iωRp/2

[(
Γ2 + ω2

Rc

)− ω2
RcΓ/2

Γ + iδp

]
(Γ2 + 2ω2

Rc)

[
Γ/2 + iδp +

ω2
Rc/4

Γ + iδp

] (8.11)

The pole structure of the denominator shows that the dressed states are
located at ±ωRc/2 as for the other two cases. In this case, Γ1 = Γ3 = Γ
and Γ2 = 0. Eq. (8.9) tells us that the subpeak linewidths are

ΓV
p± =

3Γ

2

Probe absorption as calculated from Im{ρ21Γ/ωRp} with ωRc = 2Γ is shown
in Fig. 8.9(b). As seen, the spectrum splits into a doublet with a trans-
parency dip at line center. Each subpeak has a linewidth of 3Γ/2 as shown
above. But in this case also (as for the Ξ system), EIT is only partial with
non-zero absorption at line center, and the peak absorption is less than
unity. In addition, the effect of dressed state interference is quite small, as
can be verified using calculations with and without interference.
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F. Other effects in coherent control

1. Optical rotation

Just like the imaginary part of the susceptibility induced by the strong
control laser can be used to modify the absorption of the weak probe laser,
the real part can be used to modify the refractive index of the medium, and
hence the phase change experienced by the probe laser. One consequence of
this is the rotation of the plane of polarization of a linearly polarized probe
beam as it propagates through the medium—called optical rotation.

The theoretical analysis proceeds in the same way as for EIT, except that
the quantity of interest is the real part of ρ12Γ/ωRp. The relevant density
matrix element ρ12 for the three types of three-level systems has been de-
rived previously in Eqs. (8.8), (8.10), and (8.11). The quantity Re{ρ12Γ/ωRp}
with the previous control Rabi frequency of ωRc = 2Γ for the three cases
is shown in Fig. 8.10. As expected, the rotation has a dispersive lineshape
with two resonances at the location of the dressed states created by the
control laser, exactly where the peaks for the EIT signal are located. The
separation between the maximum and minimum of each resonance is equal
to the linewidth of the probe absorption peak, as derived earlier for the
three cases. In addition, the amplitude is different in the three cases, con-
sistent with the different absorption maxima.
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Figure 8.10: Probe rotation in the three types of three-level systems. The
quantity plotted is Re{ρ12Γ/ωRp} as a function of probe detuning, with
ωRc = 2Γ and δc = 0.
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2. Electromagnetically induced absorption — EIA

Electromagnetically induced absorption is the analog of EIT in the sense
that (two) control lasers are used to create increased absorption for the
probe laser, instead of increased transparency. The phenomenon requires
an N -type level structure as shown in Fig. 8.11(a). There are two control
lasers—(i) Control 1 coupling the |1〉 → |2〉 transition with Rabi frequency
ωRc1, and (ii) Control 2 coupling the |3〉 → |4〉 transition with Rabi fre-
quency ωRc2. Both control lasers are on resonance with no detuning. The
probe laser is on the |3〉 → |2〉 transition. For simplicity we assume that
Γ1 = Γ3 = 0 and Γ2 = Γ4 = Γ.

Before solving the density matrix equations for this system, we note that
the strong control 1 laser optically pumps all the population into the |3〉
level. Control 2 then cycles the population between levels |3〉 and |4〉, so
that in steady state the populations are

ρ44 =
(ωRc2/Γ)

2

1 + 2 (ωRc2/Γ)
2 and ρ33 = 1− ρ44

The relevant matrix element for probe absorption is ρ32. Density matrix
analysis (similar to what was done for the Λ system) yields in steady state

ρ32 = − iωRpρ33
2β32α2

+
iωRpω

2
Rc2 (ρ33 − ρ44)

8β42β32β43α2

− iωRpω
2
Rc1ω

2
Rc2 (ρ33 − ρ44)

32β42β32β41β43α1α2

(
1

β31
+

1

β42

)
where

α1 = 1 +
ω2
Rc1

4β41β42
+

ω2
Rc2

4β41β31

α2 = 1 +
ω2
Rc1

4β32β31
+

ω2
Rc2

4β32β42
− 1

16

ω2
Rc1ω

2
Rc2

(
1

β31
+

1

β42

)2

β32β41α1

β31 = −iδp

β32 = −Γ

2
− iδp

β41 = −Γ

2
− iδp

β42 = −Γ− iδp

β43 = −Γ

2

A plot of Im{ρ32Γ/ωRp} is shown in Fig. 8.11(b) for the case of ωRc1 =
ωRc2 = 2Γ. The figure shows that there is a peak in absorption at line
center—electromagnetically induced absorption.
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Figure 8.11: Electromagnetically induced absorption in anN-type system.
(a) Level structure. (b) Probe absorption calculated from Im{ρ12Γ/ωRp}
as a function of probe detuning, with ωRc1 = ωRc2 = 2Γ.
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G. Problems

1. Quantum beats

Consider a spinless electron that has an � = 0 ground state and � = 1
excited state. In a magnetic field B along the z axis, the excited state
energy is

E∗
m = �ω◦ − gμBmB

Assume that the system is exposed to a short pulse of radiation of polar-
ization ε̂1 at t = 0.

(a) Which polarizations ε̂1 = ε̂x, ε̂y, ε̂+, ε̂− (where ε̂± are circular polar-
izations referred to the z axis) can possibly produce a situation where
quantum beats can be observed in the subsequent fluorescence?

(b) Assume that ε̂1 = ε̂x. Which two excited states can produce beats? At
what value of B do they cross?

(c) If the excited state has a spontaneous lifetime of Γ−1
s , calculate (within

a constant) the rate of emission of photons of polarization (i) ε̂2 = ε̂x
and (ii) ε̂2 = ε̂y, at time t after the pulse.

(d) Can you give a classical explanation for the above results?

(e) Can you suggest a polarization that could produce beats between the
m = 0 and m = 1 states?

Solution

(a) In order to produce quantum beats, the incident radiation should excite
more than one level. Since

ε̂x =
ε̂+ + ε̂−√

2
and ε̂y =

ε̂+ − ε̂−
i
√
2

the Δm selection rules tell us that ε̂x and ε̂y are the only polarizations
that can produce quantum beats.

The other two ε̂+ and ε̂− only excite one Zeeman level, namely |1, 1〉
and |1,−1〉 respectively.

(b) If ε̂1 = ε̂x, quantum beats are produced by the Zeeman levels |1, 1〉 and
|1,−1〉. These levels cross for B = 0.
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(c) As discussed in the chapter,

R(t) ∝ I1e
−Γst

[∣∣∣M (2)
ga M (1)

ag

∣∣∣2 + ∣∣∣M (2)
gb M

(1)
bg

∣∣∣2]
+ I1e

−Γ−st 2Re
{
M (2)∗

ga M (1)∗

ag M
(2)
gb M

(1)
bg e−iΔωt

}
where

|g〉 = |0, 0〉 , |a〉 = |1, 1〉 , |b〉 = |1,−1〉 , Δω = ωb − ωa =
2gμBB

�

(i) Polarizations ε̂1 = ε̂x and ε̂2 = ε̂x

Expressing the polarizations in terms of the spherical harmonics Y�m’s,
the matrix elements are

M (1)
ag = 〈1,−1|ε̂x · �P |0, 0〉

∼ 〈1,−1| (Y11 + Y1−1) |0, 0〉
∼ 〈1,−1|Y1−1|0, 0〉

M (2)
ag = M (1)

ag

If we denote this matrix element by A, then from a similar analysis

M
(1)
bg = 〈1, 1|ε̂x · �P |0, 0〉

∼ 〈1, 1| (Y11 + Y1−1) |0, 0〉
∼ 〈1, 1|Y11|0, 0〉 = A

M
(2)
bg = M

(1)
bg = A

Therefore the rate of emission goes as

R(t) ∼ I1e
−Γst

[
2
∣∣∣M (1)

ag M (1)
ga

∣∣∣2
+2Re

{
M (1)∗

ga M (1)∗
ag M (1)

ga M (1)
ag e−iΔω t

}]
∼ 2I1e

−Γst|A|4 [1 + cosΔω t]

= 4I1e
−Γst|A|4 cos2

(
gμBBt

�

)
(ii) Polarizations ε̂1 = ε̂x and ε̂2 = ε̂y

Since the input polarization is again along x, the matrix elements for
(1) are the same as before, namely

M (1)
ag = M

(1)
bg = A
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The matrix elements for (2) with y polarization are

M (2)
ag ∼ i 〈1,−1| (Y11 + Y1−1) |0, 0〉 = −iA

M
(2)
bg ∼ i 〈1,+1| (Y11 + Y1−1) |0, 0〉 = iA

Therefore the rate of emission goes as

R(t) ∼ I1e
−Γst

[
2
∣∣∣M (1)

ag M (1)
ga

∣∣∣2
+2Re

{
M (1)∗

ga iM (1)∗
ag M

(1)
gb iM

(1)
bg e−iΔω t

}]
∼ 2I1e

−Γst|A|4 [1− cosΔω t]

= 4I1e
−Γst|A|4 sin2

(
gμBBt

�

)
(d) Classically, we can imagine that the exciting pulse creates a set of

electric dipoles aligned with the electric field of the radiation. They
then precess at the Larmor frequency about the magnetic field—z axis—
and the motion is damped by re-radiation. The electric dipole radiation
therefore shows a maximum whenever the axis of the dipoles is aligned
with respect to the axis of observation.

(e) In order to produce beats between the m = 0 and m = 1 states we need
a polarization that is a linear combination of ε̂+ and ε̂z, for example

ε̂1 = 1√
2
(ε̂+ + ε̂z) =

1
2 (ε̂x + iε̂y) +

1√
2
ε̂z



274 Coherence

2. Hanle effect

Consider the above situation except with continuous “white” excitation.

(a) Sketch a curve forRy(B), the radiation rate with polarization ε̂y. Sketch
an experimental setup which would measure this.

(b) If this system were studied in a level crossing experiment, what would
be the half-width-at-half-maximum (HWHM) of the level crossing sig-
nal observed with polarization ε̂2 = ε̂x?

(c) Can you suggest a way in which the sign of g could be determined using
the Hanle effect?

Solution

(a) In the case of continuous excitation, we integrate R(t) from t = 0 to ∞
to obtain

R ∼ I1 Re
{
M (2)∗

ga M (1)∗
ag M

(2)
gb M

(1)
bg

} Γs

Γ2
s + (Δω)2

+ I1 Im
{
M (2)∗

ga M (1)∗
ag M

(2)
gb M

(1)
bg

} Δω

Γ2
s + (Δω)2

For ε̂2 = ε̂y, the term in brackets is pure real, and from the previous
problem we have

M (1)
ag = M

(1)
bg = A, M

(2)
bg = −iM (2)

ag = iA

Therefore the rate has an inverted Lorentzian lineshape given by (and
sketched below)

Ry(B) ∼ −I1|A|4 Γs

Γ2
s + (Δω)2

where Δω =
2gμBB

�
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An experimental schematic to measure Ry is shown below.

(b) For ε̂2 = ε̂x, the term in the brackets is still real and the curve is a
Lorentzian with FWHM = 2Γs. Therefore the HWHM is Γs, or in
terms of B it is

BHWHM =
�Γs

2gμB

(c) If the analyzer is rotated by 45◦ from the polarizer, the resultant curve
obtained has a dispersive lineshape. The sign of the dispersion for a
given sign of B field depends on the sign of g. Hence, g can be measured.
The idea is shown in the figure below.
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3. Dicke superradiance

Consider the two spin 1/2 magnetic moments mentioned by Dicke as an
example of coherence in spontaneous emission. You are given that the
spontaneous decay of a single spin proceeds at a rate

R1 = | 〈↑ |H ′
M1| ↓〉 |2

(a) Find the spontaneous decay rate for the states of a two-spin system

|S,ms〉 = |1,+1〉 , |1, 0〉 , |1,−1〉 , and |0, 0〉

corresponding to the triplet and singlet states, respectively.

(b) How do these rates compare with the expectation based on the idea
that the particles decay independently?

Solution

(a) The states of the two-spin system in terms of the single spins are

(i) Triplet

|1,+1〉 = |↑
1
↑

2
〉

|1, 0〉 = 1√
2
(|↑

1
↓

2
〉+ |↓

1
↑

2
〉)

|1,−1〉 = |↓
1
↓

2
〉

(ii) Singlet

|0, 0〉 = 1√
2
(|↑

1
↓

2
〉 − |↓

1
↑

2
〉)

The perturbing Hamiltonian is defined as

H ′
M1 ≡ H1

M1 +H2
M1

The selection rules for this Hamiltonian are ΔS = 0 and Δms = ±1.
Therefore the spontaneous decays are as follows.

(i) Triplet — the |1,+1〉 state can spontaneously decay to the |1, 0〉
state which, in turn, can decay to the |1,−1〉 ground state. The corre-
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sponding decay rates are

|1,+1〉 R = | 〈1, 0|HM1|1, 1〉 |2

=
∣∣∣ 1√

2
(〈↑

1
↓

2
|+ 〈↓

1
↑

2
|) | (H1

M1 +H2
M1

) |↑
1
↑

2
〉
∣∣∣2

=
∣∣∣ 1√

2
〈↓

1
|H1

M1| ↑1
〉+ 1√

2
〈↓

2
|H2

M1| ↑2
〉
∣∣∣2

= 2R1

|1, 0〉 R = |〈1,−1|HM1|1, 0〉|2

=
∣∣∣ 〈↓1

↓
2
| (HM11 +H2

M1

) |1/√2 (|↑
1
↓

2
〉+ |↓

1
↑

2
〉)〉

∣∣∣2
=

∣∣∣ 1√
2
〈↓

1
|H1

M1| ↑1
〉+ 1√

2
〈↓

2
|H2

M1| ↑2
〉
∣∣∣2

= 2R1

|1,−1〉 R = 0

(ii) Singlet — the |0, 0〉 state cannot decay, and hence

|0, 0〉 R = 0

(b) If the particles were to decay independently the |1,+1〉 state (or the
|↑

1
↑

2
〉 state in the two-spin basis) would decay at the same rate 2R1,

but to the ground state |1,−1〉 (or |↓
1
↓

2
〉). The |1, 0〉 and |0, 0〉 states

have one excited spin and both would have decayed at R1 to the same
ground state |1,−1〉.
Thus it is important to include coherence in spontaneous emission to
get the rates correct.
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4. Spin echoes in extended media

The idea of this problem is to use lasers to create a coherent spin echo that
propagates in a different direction than either of the incident pulses.

Assume a gas of identical two-state systems, each with resonant frequency
ω◦, and position �ri and velocity �vi at t = 0. Do not consider the Doppler
shift explicitly—it is accounted for using �ri(t) = �ri+�vit in the phase factors
�k · �r.

• At t = 0 apply a π/2 pulse with �k1 along x.

• At t = T apply a π pulse with �k2 at an angle α from x.

Due to the fact that α �= 0, the phase matching and Doppler cancellation
will not be perfect. Nevertheless, there will be an echo for sufficiently small
α.

(a) Find Te and �ke, the time and direction of the echo. Find expressions
for the phase matching error and for the velocity space dephasing.

(b) By what factor will the intensity be reduced due to failure of perfect
phase match? Assume λ = 500 nm, cell size 1 cm, and α = 3× 10−3.

(c) Crudely estimate the loss of signal due to velocity space mismatch—
assume vrms = 103 m/s and T = 200 ns.

Solution

Consider the phase of the ith radiator.

• t = 0: π/2 pulse with �k1 along x̂.

φi(t ≤ T ) = �k1 · �ri − ω◦t

• t = T : π pulse with �k2 at an angle α from x̂

φπ = �k2 · (�ri + �viT )

Therefore the phases are

φi(T+) = 2φπ − φi(T−) = 2�k2 · (�ri + �viT )− �k1 · �ri + ω◦T

φi(t > T ) = 2�k2 · (�ri + �viT )− �k1 · �ri − ω◦ (t− 2T )

Echo radiation adds a phase −�ke · (�ri + �vit); therefore the final phase is

φi (t > T ) =
(
2�k2 − �k1 − �ke

)
·�ri+

(
2�k2T − �keT − �ket

)
·�vi−ω◦ (t− 2T )
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(a) The echo occurs when the above phase in minimized for all i; i.e. it is
coherent over the sample. Since the position and velocity are unpolar-

ized (isotropic) in a gas, �ke is obtained by minimizing
(
2�k2 − �k1 − �ke

)
and Te is obtained by minimizing

(
2�k2T − �ket

)
. All oscillators are

identical so the ω◦ term is the same.

By energy conservation

|�k1| = |�k2| = |�ke| = k

As can be seen from the figure,
(
2�k2 − �k1 − �ke

)
is minimized when �ke

is at an angle 2α from x, i.e. along
(
2�k2 − �k1

)
.

Therefore the time of the echo is such that

|2�k2T − �keTe| = minimum

The figure shows that this happens when

kTe = 2kT cosα =⇒ Te = 2T cosα ≈ 2T (α � 1)

(i) Phase-matching error is

Δk = |2�k2 − �k1| − k

Using

�k2 = k (cosαx̂+ sinαŷ) and �k1 = kx̂
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we get

Δk = k

[√
(2 cosα− 1)

2
+ (2 sinα)

2 − 1

]
= k

[√
5− 4 cosα− 1

]
For α � 1, we have

Δk ≈ k
[√

1 + 2α2 − 1
]
= α2k

(ii) Velocity space dephasing is

Δφv =
(
2�k2T − 2�keT

)
· �vi = 2T

(
�k2 − �ke

)
· �vi

Therefore for α � 1, we get

Δφv ≈ 2T�vi · ŷ k sinα ≈ 2αkT �vi · ŷ

(b) The intensity reduction due to phase mismatch is

I ∼ sin2 (ΔkL/2)

(ΔkL/2)
2 I◦

For cell extending from −L/2 to L/2

ΔkL

2
≈ α2kL

2
=

α2πL

λ

Using the values of λ = 500 nm, L = 1 cm, and α = 3× 10−3, we get

I = 0.8978 I◦

(c) We can estimate the loss in intensity due to Δφv by assuming a uniform
velocity distribution from −vrms to +vrms along y. Then

I ∼ sin2 (2αkTvrms)

(2αkTvrms)
2 I◦

The term in brackets is

2αkTvrms = 2α
2π

λ
Tvrms = 15

Therefore

I ≈ 1.5× 10−3 I◦
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Lineshapes

N
o resonance line is infinitely narrow, even in theory, because sponta-
neous emission always introduces a finite lifetime to the upper state

and therefore (by the uncertainty principle) a natural width to the transi-
tion. In practice, a number of other processes such as collisions, Doppler
broadening, power broadening, field inhomogeneities, etc., also add width
to resonance lines. It is important to study the effect of these processes on
the frequency dependence of the transition probability (the lineshape) for
two important reasons: (i) it is not possible to find the resonance frequency
ω◦ with high precision unless the line (or especially several overlapping
lines) can be fitted accurately, and (ii) it is not possible to estimate either
the magnitude of the “signal” or its dependence on the intensity of the
driving radiation without understanding the broadening mechanisms.

This chapter is devoted to the study of the different kinds of lineshapes
encountered in spectroscopy experiments. We will also see the description
of Gaussian beams in optical systems because the Gaussian function repre-
sents the intensity profile of lasers used in such experiments.

281
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A. Low-intensity and simple collisions

1. Homogeneous vs. inhomogeneous broadening

It is customary to divide broadening mechanism into two classes—
homogeneous and inhomogeneous.

(i) Homogeneous

This broadening results from a similar widening of the transition proba-
bility curve for each atom, e.g. the natural linewidth or collision-induced
mechanisms. In homogeneous broadening, all of the atoms exchange energy
with the impressed radiation field equally. Since this kind of broadening
arises from random interruptions in the coherence of the radiation from
the atoms, it results in a mathematical lineshape called a Lorentzian. The
normalized (so that

∫ ∞
−∞ L dω = 1) functional form is

L (ω) =
1

2π

Γ

(ω − ω◦)2 + (Γ/2)2

where ω◦ is the center frequency and Γ is the linewidth (FWHM).

(ii) Inhomogeneous

This broadening results from a small random shift of the resonance fre-
quency for different atoms which widens the transition probability curve
for the ensemble of atoms. e.g. Doppler effect or inhomogeneous fields (in
solids). In inhomogeneously broadened systems only a fraction of the atoms
exchange energy efficiently with the field at a given frequency (and time).
It results from random perturbations of the frequency of the atoms which
generally follow a normal (Gaussian) distribution. Thus the mathematical
form of the lineshape is Gaussian, which has the normalized form

G(ω) =
1√
2π σ

exp

[
− (ω − ω◦)2

2σ2

]
where ω◦ is the center frequency, and σ is the rms value of (ω − ω◦). If we
want to express the linewidth as FWHM, then it is 2

√
2 ln 2σ = 2.355 σ.

The distinction between homogeneous and inhomogeneous broadening can
often be made only approximately. For example the (homogeneous) broad-
ening produced by collisions may be different for atoms in different parts
of the (inhomogeneous) Doppler profile owing to the fact that the atoms in
the tail of the Doppler profile are moving faster and suffer collisions more



Low-intensity and simple collisions 283

frequently. Interatomic forces between colliding atoms can shift the fre-
quency of the radiation slightly, causing asymmetric lineshapes. Therefore,
throughout this chapter, we shall assume that the collisions are simple—
they occur at a constant rate, and they are instantaneous. Moreover we
shall assume that the radiation intensities are low in order to avoid satura-
tion effects.

2. Lorentzian line

Let us assume that there is some mechanism which randomly limits the
duration of the interaction of the radiating (or absorbing) subsystems with
the oscillating field. This can arise from the natural decay of the excited
state, from collisional interruption of the oscillators (T2 type processes),
from loss of atoms, etc.—all that matters is that it is a simple stochastic
process characterized by

Γ randomization rate for radiating subsystems

1/Γ mean lifetime of uninterrupted interaction

For such a process the probability of uninterrupted interaction for a time
between t and (t+ dt) is f(t)dt where the distribution function is

f(t) = Γe−Γt with

∞∫
0

f(t)dt = 1

Now let us investigate the lineshape for an ensemble of two-state subsystems
that interact with the field for a random time discussed above. For each
subsystem the (Rabi) transition probability is

P (ω, t) =
ω2
R

ω′2
R

sin2
(
ω′
Rt

2

)
with ω′2

R = (ω − ω◦)2 + ω2
R

when the subsystem has interacted for time t with radiation at ω.
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Thus the ensemble average of the transition probability is

〈P 〉Γ =

∞∫
0

P (ω, t)f(t) dt

=
ω2
R

ω′2
R

Γ

∞∫
0

sin2
(
ω′
Rt

2

)
e−Γt dt

=
ω2
R

2ω′2
R

Γ

∞∫
0

(1− cosω′
Rt) e

−Γt dt

=
ω2
R

2ω′2
R

[
1− Γ2

Γ2 + ω′2
R

]

=
ω2
R

2ω′2
R

[
ω′2
R

Γ2 + ω′2
R

]

=
1

2

[
ω2
R

(ω − ω◦)2 + ω2
R + Γ2

]

(9.1)

which shows that the probability distribution has a Lorentzian lineshape.
The terms in the denominator are, respectively, the frequency offset, the
power broadening factor, and the randomization rate.

This average was carried out using t to represent the duration of interaction—
in a real system one imagines that these intervals all extend backward in
time from the moment of observation.

As we have seen in Chapter 5, “Resonance,” ω2
R is proportional to the

intensity of the incident wave—in fact ωR is the natural measure of this
intensity because it tells the frequency at which the subsystems are cycled
back and forth between the two states (on resonance). It should be noted
that the squares of the power broadening and randomization rates add,
whereas, if several processes (e.g. collisions, natural decay) act together,
the randomization rate Γ is the sum of the Γ’s for each of them. The
combined FWHM of the resonance curve given above is

ΓF = 2
√
ω2
R + Γ2

which shows that the width is 2Γ in the low power limit and becomes
2ωR at high powers. Finally, note that the ensemble average has removed
oscillations both in frequency and in time that were present in the two-state
transition probability.
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3. Spontaneous decay lineshape

Weisskopf and Wigner∗ considered the problem of spontaneous emission,
showing that to a very good approximation it caused the excited state
population to decay exponentially with a rate given by the Einstein A co-
efficient. (Slight deviations from the exponential law are predicted at very
short times and also at very long times; no deviation has yet been seen ex-
perimentally.) Phenomenologically speaking this decay can be represented
by adding a small imaginary term to the energy “eigenvalue” for each ex-
cited state

E′
a = Ea − i�Γa/2 =⇒ ω′

a = ωa − iΓa/2

where Γa = A.

Then the decaying behavior appears in the expression for the wavefunction

|ψa(t)〉 = e−iHt/� |ψa(0)〉 = e−Γat/2e−iEat/� |ψa(0)〉
and the probability of being in state |a〉

Pa(t) ∼ ψ∗
aψa = e−ΓatPa(0)

decays at the rate Γa.

Since the decay of the excited state is exponential, the lineshape of a nat-
urally broadened transition is Lorentzian. This works out formally when
substituted in the transition for a two-state system (the sin2 term is re-
placed by its average value of 1/2)

P (ω) =
1

2

ω2
R

|ω′◦ − ω|2 + ω2
R

=
1

2

ω2
R

|ωa − iΓa/2− ωb − ω|2 + ω2
R

taking ωa > ωb

=
1

2

ω2
R

|(ω◦ − ω)− iΓa/2|2 + ω2
R

=
1

2

ω2
R

(ω◦ − ω)2 + (Γa/2)2 + ω2
R

This agrees with the expression in Eq. (9.1) for two-state atoms in which
the probabilities of the two states were taken to decay at a combined rate
of Γ, when Γ is identified with Γa/2. This identification is required because
only one state decays in the present example. In general

Γ = (Γa + Γb)/2

∗V. F. Weisskopf and E. P. Wigner, “Calculation of the natural brightness of spectral
lines on the basis of Dirac’s theory,” Z. Phys. 63, 54–73 (1930).
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if both states can decay. Note that in this case one must make the replace-
ment

ω′
ab = ωab − i(Γa + Γb)

because with a complex eigenvalue for each state and using ω′
ab = ω′

a − ω′
b

will give (incorrectly) Γ = (Γa − Γb)/2.
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B. Relativistic effects in emission and
absorption

Doppler broadening arises from the motion of the absorbing or emitting
atoms relative to the observer. It is an inhomogeneous form of broaden-
ing and is nearly always the limit on attainable resolution in conventional
spectroscopy (because it decreases only as T 1/2 and is therefore not easy
to eliminate).

Doppler broadening is but one manifestation of special relativity. Several
others are important in high precision resonance physics and we shall give
a treatment that is general enough to include all effects observed so far.

1. Photon recoil

The (angular) frequency of a photon given off by an atomic system of mass
M is making a transition between two states by an energy ET is not exactly
ω◦ = ET /�. The discrepancy arises because of the recoil of the atomic
system and is termed photon recoil (although atomic recoil might be a
better term!).

Consider an atom at rest in its excited state. Its total energy W is

W = Mc2 + ET

The emitted photon has energy Ee = �ωe and momentum pγ = �ωe/c =
Ee/c.

By momentum conservation, this momentum gets transferred to the atom
and is felt by the atom as a recoil, as shown in Fig. 9.1 below.

Figure 9.1: Recoil momentum felt by atom after it emits a photon.

The energies before and after the decay are

Wi = Mc2 + ET and Wf = Mc2 +
p2γ
2M

+ Ee

where p2γ/2M is the recoil energy of the atom. By energy conservation
(Wi = Wf ) we have

ET = Ee

(
1 +

Ee

2Mc2

)
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which gives

Ee ≈ ET

(
1− ET

2Mc2

)
=⇒ ωe ≈ ω◦

(
1− �ω◦

2Mc2

)
(9.2)

The difference between ωe and ω◦ is quite small since Mc2 ≈ A × 109 eV,
where A is the atomic number.

In order to be absorbed, a photon must have a frequency

ωa = ω◦

(
1 +

�ω◦
2Mc2

)
which is greater than ω◦ because some of the energy must go into kinetic
energy of the atom. The recoil of an atom due to the emission or absorption
of a photon depends on the direction of the photon and thus produces ki-
netic splittings of the line in high precision spectroscopy employing photons
moving in several directions.

2. Doppler shift

Now consider the transformation of the photon back into the laboratory
coordinate system in which the atom is initially moving with velocity �v.
Assume that the atom emits a photon at an angle θ with respect to its
velocity �v, as shown in Fig. 9.2 below.

Figure 9.2: Angle θ between atomic velocity and direction of photon
emission.

The relativistic Doppler formula gives

ωLe =
ωe

γ (1− β cos θ)

where

γ =

√
1

1− β2
and β =

v

c

Thus the frequency in the lab frame is red shifted or blue shifted from the
frequency of the emitted photon depending on whether θ < π/2 or θ > π/2.



Relativistic effects in emission and absorption 289

Specifically, the frequency in the lab frame can be written as

ωLe = ωe

[
1−

(v
c

)2
]1/2 [

1− v

c
cos θ

]−1

≈ ωe

[
1 +

v cos θ

c
−

(v
c

)2
(
1

2
− cos2 θ

)]
The first term is the first-order Doppler shift (v cos θ is the velocity com-
ponent along the direction of the photon), and the second term is the
second-order Doppler shift.

If we now add the recoil term from Eq. (9.2) we get

ωLe ≈ ω◦

[
1 +

v cos θ

c
−

(v
c

)2
(
1

2
− cos2 θ

)
− �ω◦

2Mc2

]
In most experimental situations the second-order Doppler term (which is of
order kBT/Mc2) is even smaller than the photon recoil term, which is itself
usually unobservable. Hence only the first-order Doppler shift is important,
and one finds for the laboratory frequency of the photons

ωL ≈ ω◦

[
1 +

v cos θ

c

]
= ω◦

[
1 +

v�
c

]
= ω◦ + �k · �v

where v� is the component of the atom’s velocity along the emitted photon,
and �k is the photon wavevector. This formula also applies to absorption,
since the only difference between laboratory absorption and emission fre-
quencies comes from the recoil term.
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C. Lineshape of atoms in a gas

1. Gaussian distribution

When a gas of atoms of mass M is at equilibrium at temperature T , the
velocity distribution is a Maxwell–Boltzmann distribution. The most famil-
iar form of this distribution is actually for the distribution of speeds, and
is proportional to v2e−Mv2/2kBT . In order to determine the lineshape for
emission or absorption of radiation from a gas it is necessary to use the
(simpler) one dimensional form of this distribution

f(v�) dv� =

√
M

2πkBT
exp

(
− Mv2�
2kBT

)
dv�

=
1√
2πvT

exp

(
− v2�
2v2T

)
dv� where vT =

√
kBT

M

vT is the characteristic thermal speed of an atom in the gas.

Combining the above distribution function with the first-order Doppler shift
results in the frequency-space distribution of the Doppler-broadened line.
Setting

ω − ω◦ = ω◦
v�
c

= 2πν◦v� = kv�

one finds

D(ω) dω =
1√

2π ωD

exp

[
− (ω − ω◦)

2

2ω2
D

]
dω (9.3)

The function D(ω) is the fractional strength of the system at frequency ω
and

ωD = 2πν◦
vT
c

= 2π
vT
λ◦

= kvT

is the Doppler width. At room temperature an atom of mass 40 amu has
ωD/2π = 0.5 GHz at 5000 Å.

The distribution above has the form of the normalized Gaussian function
seen at the beginning of this chapter.

2. Voigt profile

The preceding expression for the Doppler profile of a spectral line neglected
any other sources of broadening of the transition. When these are in-
cluded the actual lineshape becomes a convolution of the Gaussian and



Lineshape of atoms in a gas 291

the Lorentzian functions

V (ω − ω◦,ΓF , ωD) =
1

2π
√
2π ωD

×
∞∫

−∞
dω′ ΓF

(ω′ − ω◦)2 + (ΓF /2)2
exp

[
− (ω′ − ω◦)

2

2ω2
D

]
(9.4)

assuming that the other broadening mechanisms are homogeneous—i.e. hav-
ing Lorentzian lineshapes and all linewidths adding to an effective ΓF . The
above lineshape is known as the Voigt profile and cannot be evaluated
analytically; but commercial programs are available to use different ratios
of ΓF and ωD to get the best fit to experimental data.

For real gases at low pressures (<1 torr at visible frequencies) the line is
Gaussian near line center, and Eq. (9.3) is a good approximation to Eq.
(9.4). This situation arises because the natural linewidth is typically 100
times smaller than ωD and the integrand in Eq. (9.4) peaks near ω′ = ω◦.

However, there are two frequently encountered cases in which Eq. (9.3) is
a poor approximation to Eq. (9.4). One occurs when the randomization
rate (sum of natural decay, collisional processes, etc.) becomes comparable
with ωD so that many values of ω′ contribute to V . The other occurs far
from line center where the Gaussian falls off faster than the Lorentzian; the
dominant contribution to V is then a Lorentzian tail which comes from the
region ω′ ≈ ω◦ in the integral in Eq. (9.4) and gives a line amplitude equal
to ΓF /(ω − ω◦)2 for large detunings.
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D. Confined particles

Trapped particles offer the possibility of reaching the ultimate in spectro-
scopic precision: cooling the particle with lasers or electronics can reduce
second-order Doppler shifts at least to 10−17 (for 1 mK and atomic mass 10
amu), proper design of the cavity can suppress spontaneous emission, and
collisions can be virtually eliminated for single trapped particles in cryogeni-
cally pumped environments. The first-order Doppler shift can be entirely
eliminated also, in spite of the fact that v/c is not particularly small (∼ 10−8

in the above example). Suppression of the first-order Doppler shift results
from the nature of the spectrum emitted/absorbed by a trapped particle—it
consists of an unshifted central line with sidebands spaced apart by multi-
ples of the frequency of oscillation. The amplitude of the sidebands may
be reduced by lowering the amplitude of oscillation of the trapped parti-
cle, but it is also possible to address spectroscopically the unshifted central
line—this approach underlies the Mössbauer effect, as well as the use of
buffer gases and specially coated containers to get narrow spectra.

1. Spectrum of oscillating emitter

We now consider the lineshape of the emission spectrum of a harmonically
bound particle.∗ If the particle oscillates with amplitude x◦ at frequency
ωt, then the phase of radiation emitted by the atom towards a detector
situated at large x will contain the term

φ(t) = −kx(t)− ω◦t = −kx◦ sinωtt− ω◦t (9.5)

A wave with this phase will have an instantaneous frequency

ω(t) = −φ̇(t) = kx◦ωt cosωtt+ ω◦ = kv(t) + ω◦ (9.6)

consistent with the usual Doppler shift term into the lab system of �k · �v.
In the parlance of electrical engineering, signals with the above phase and
frequency correspond to phase and frequency modulation, respectively. We
shall find the spectrum from the phase expression in Eq. (9.5) since the
amplitude of the phase oscillation is the physically important modulation
index β, which is just the maximum phase shift relative to ω◦t

β = kx◦

This approach also avoids the common pitfall of assuming that the phase
corresponding to frequency modulation is −ω(t)t. Thus we must find the
spectrum of a wave whose amplitude is proportional to

a(t) = cos φ(t) = cos (ω◦t+ β sinωtt)

∗The absorption spectrum has the same shape, so we do not need to consider it separately.
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The spectrum will contain nth order Bessel functions Jn. Some algebra
using the following identities

cos(z sin θ) = J◦(z) + 2

∞∑
k=1

J2k(z) cos(2k θ)

sin(z sin θ) = 2

∞∑
k=0

J2k+1(z) sin[(2k + 1)θ]

gives

a(t) =

∞∑
n=−∞

(−1)nJn(β) cos [(ω◦ + nωt)t]

Obviously the system does not have a continuous lineshape, rather the
emission is either at ω◦ or sidebands that differ from ω◦ by a multiple
of the trapping frequency, nωt. Physically this results from the exactly
periodic nature of the motion. The probability of emission at frequency
ω◦ +nωt is simply J2

n(β), hence the intensity spectrum of the emitted light
is given by

I(ω) ∝
∞∑

n=−∞
J2
n(β) δ(ω − ω◦ − nωt) (9.7)

Figure 9.3: Spectral intensity of central peak and sidebands in FM modu-
lation with modulation index β. (a) β = 0.5. (b) β = 0.1, showing nearly
zero intensity in the sidebands.

The effect of β on the spectral intensity is shown graphically in Fig. 9.3.
The height of the central peak and three sidebands are shown in the figure
for two values of β. For β = 0.5 shown in Fig. 9.3(a), only the n = ±1
sidebands have significant intensity, while the others are practically zero.
For β = 0.1 shown in the Fig. 9.3(b), all the sidebands are almost zero. Thus
the sidebands get increasingly suppressed as β becomes small compared to
1, or equivalently (since β = kx◦) as x◦ becomes small compared to λ.
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An alternative and intuitively appealing derivation of these results is to
consider the quantum number of the bound oscillating particle explicitly
in the calculation. Then the initial state is an atom in state |b〉 trapped
in quantum state ni of the trap; after emission the atom is in state |a〉
in quantum state nf of the trap. The frequency of the emitted photon
determined from energy conservation

�ω = �ωba + Etrap
i − Etrap

f in general

= �(ωba + nωt) for harmonic trap with n = ni − nf

This expression needs no correction for recoil since the initial and final
kinetic energies of the atom are explicitly accounted for in Etrap

i and Etrap
f .

The transition rate is

R =
4k3

3h
|〈b|ε̂ · �p|a〉|2|〈ψtrap

f |e−i	k·	r|ψtrap
i 〉|2 (9.8)

The second term is the confinement factor and depends on the phase vari-
ation of the outgoing wave and the trap eigenstates |ψf 〉 and |ψi〉. If this

matrix element is evaluated in the momentum representation, e−i	k·	r is a
translation operator (with −�k) so this factor becomes

|〈φf (�p− �k)|φi(�p)〉|2

In the case of a harmonic oscillator with ni, nj 	 1, the confinement factor
will yield the Bessel function expression consistent with Eq. (9.3).

The preceding view bears much similarly to electronic transitions in molec-
ular spectroscopy in that an electronic transition occurs between two states
with quantized vibrational motion. Indeed, the matrix element involving
the trap states in Eq. (9.8) is analogous to the Franck–Condon factor in

molecular spectroscopy (except for ei
	k·	r ≈ 1 owing to the small size of

atoms, the matrix element of �p depends on �r and must be brought inside
the spatial matrix element). This association emphasizes the generality of
Eq. (9.8)—it applies equally to non-harmonic traps, and even to traps (as
for neutral atoms) in which the confinement potential differs for state |a〉
and |b〉.

2. Tight confinement

The most dramatic effects associated with tightly confined radiators oc-
cur when the particles are confined to dimensions smaller than one wave-
length of the emitted light—tight confinement also called the Lamb–Dicke
regime. This is evident from the suppression of sidebands seen in Fig. 9.3.
It can also be derived from the confinement matrix element in Eq. (9.8): if
the spatial extent of the wavefunctions associated with ψtrap is � λ, then
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�k · �r � 1 and it is reasonable to expand e−i	k·	r ≈ 1 − i�k · �r. The first term
will give the selection rule i = f (since the φi’s are orthonormal) and hence
ω = ωba exactly. The second term will have matrix elements of order r λ
which is � 1.

(i) Recoilless emission

Emission with i = f is called recoilless emission because the atom has the
same momentum distribution after the emission as before. The momentum
of the photon is provided (or taken up in the case of absorption) by the trap
itself. This is analogous to the Mössbauer effect in which the momentum is
taken up by the crystal as a whole. There the confinement matrix element
with f = i is called Debye–Waller factor.

(ii) Sideband cooling

Strongly confined particles may be radiatively cooled to very low tempera-
tures by a technique called sideband cooling, which we will see in detail in
Chapter 11, “Cooling and Trapping.” Briefly, a tightly confined particle is
excited at frequency ωc = ωba−ωt, i.e. on a motion-induced sideband. Since
the subsequent spontaneous decay is most probably at ωba, one quantum
of trap motion will be lost by the combined excitation/decay cycle. This
works best when the spontaneous decay width Γs is � ωt, in which case it
is possible to cool most of the particles to the lowest quantum state of the
trap.

(iii) Dicke narrowing

It is not necessary to confine particles harmonically in order to achieve
significant narrowing. In 1953 Dicke∗ pointed out that collisions could
reduce the usual Doppler width substantially if two conditions were met—(i)
the mean free path between collisions is much smaller than the wavelength,
and (ii) the collisions do not destroy the coherence between the radiating
states.

The essence of Dicke’s argument was that gas collisions could be viewed as
a succession of traps each with a different frequency (he considered traps
with steep walls rather than harmonic springs, but this is immaterial). All
particles would have a recoilless line at ω = ωba, and the average over the
traps with different frequencies would average the other lines into a broad
spectrum with approximately the original Doppler width. He also gave the

∗R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys.

Rev. 89, 472–473 (1953).
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results of a calculation in which the atom was allowed to diffuse randomly

I(δ) =
I◦(Γ/2π)

δ2 + (Γ/2)2

which is a Lorentzian (!) with FWHM

Γ = k2D/2

where D is the self-diffusion coefficient. This linewidth is roughly 2.8L/λ
times the usual Doppler width (L is the mean free path). Therefore, the
linewidth is greatly reduced below the Doppler width when the condition
L � λ is satisfied.

3. Weak confinement — The classical regime

Now consider the case in which the particle is weakly confined so that the
amplitude of oscillation is many wavelengths. In this case the maximum
phase shift is large and the spectrum will contain many sidebands. We refer
to this as the classical regime because the quantization of frequencies in the
spectrum may be neglected while attention is concentrated on the overall
lineshape. The viewpoint is completely justified for weak traps in which
the trapping frequency is less than the spontaneous linewidth—then the
sidebands are too close to be resolved and the spectrum will be continuous.

In this classical regime, the lineshape may be determined simply by exam-
ining the instantaneous frequency [Eq. (9.6)] and determining the fraction
of the time it has each particular frequency. Consider the time interval 0
to π/ωt during which the frequency has each value only once, at the time

t(δ) = ω−1
t cos−1(δ/ωm)

where δ = ω − ω◦ and ωm = kx◦ωt is the maximum deviation of ω(t) from
ω.

The probability density for emission between δ and δ + dδ is

P (δ)dδ = |t(δ + dδ)− t(δ)| π

ωt

=
ωt

π

∣∣∣∣ dtdδ
∣∣∣∣ dδ

Using the derivative of cos−1 x as −1/
√
1− x2 we get

P (δ) =
(ωt/π)ω

−1
t ω−1

m√
1− (δ/ωm)

2
=

1

πωm

1√
1− (δ/ωm)

2

with the condition that |δ| ≤ ωm. The possibility of δ > ωm is classically
forbidden but slightly allowed quantum mechanically.
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E. Gaussian beam optics

The study of Gaussian beams in optical systems is motivated by the fact
that most lasers used in spectroscopy experiments oscillate with a Gaussian
distribution of the electric field

Es = E◦ exp
[
− r2

w2

]
As a consequence, the intensity is also Gaussian with its radial distribution
given by

I(r) = I◦ exp
[
−2r2

w2

]
The parameter w—called the Gaussian beam radius—is the radius at
which the intensity has decreased to 1/e2 or 0.135 of its peak value. At 2w,
the intensity has reduced to 0.0003 of its peak value which is completely
negligible. Thus nearly 100% of the power is contained within a radius of
2w.

If we want the power contained within a radius r, that is easily obtained
by integrating the intensity distribution from 0 to r

P (r) = P (∞)

[
1− exp

(
−2r2

w2

)]
where P (∞) is the total power in the beam. This implies that the total
power is related to the maximum intensity as

I◦ = P (∞)

[
2

πw2

]
Propagation of Gaussian beams through an optical system is simplified by
the fact that the Fourier transform of a Gaussian function is also Gaussian.
Thus the transverse intensity distribution remains Gaussian at every point
in the system, independent of the presence of optical elements such as lenses
and mirrors. The only things that change as the beam propagates are the
radius of the beam and the radius of curvature of the wavefront.

Imagine that we somehow create a light beam with a Gaussian distribution
and a plane wavefront at the position x = 0—this point is called the beam
waist because the beam is narrowest here, and the radius w◦ here is called
the beam waist radius. The beam size and wavefront curvature vary with x,
as shown in Fig. 9.4. The beam size will increase, slowly at first and then
faster, eventually becoming proportional to x. The radius of curvature of
the wavefront, which was infinite at x = 0, will become finite and initially
decrease with x. At some point it will reach a minimum value then increase
with increasing x, eventually becoming proportional to x.
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Figure 9.4: Divergence of a Gaussian beam as it propagates. The beam
radius is smallest at the waist (x = 0) where the wavefront is plane.

The equations describing the Gaussian beam radius w(x) and wavefront
radius of curvature R(x) are

w2(x) = w2
◦

[
1 +

(
λx

πw2◦

)2
]

R(x) = x

[
1 +

(
πw2

◦
λx

)2
]

As expected from the diffraction of a wave, the beam diverges as if starting
from a point, with the divergence depending on the waist radius and the
wavelength. Since both the size and curvature depend on w◦ and λ in the
same way, we are led to define a single parameter xR—called the Rayleigh
range—as

xR =
πw2

◦
λ

Thus xR is the point at which the beam radius increases by a factor of
√
2

over its value at the beam waist. Similarly, the radius of curvature R has
its minimum value at x = xR.
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F. Problems

1. Convolution of lineshapes

When two separate physical processes both contribute to the lineshape, the
resultant lineshape is the convolution of the (normalized) distributions. Say
D1(ω − ω1) and D2(ω − ω2) are the normalized lineshapes of the first and
second type of process. The resultant lineshape is then their convolution

DR(ω − ω◦) =
∫ ∞

−∞
dω′ D1(ω

′ − ω1)D2(ω
′ − ω2)

(a) Consider that D1 and D2 are both Lorentzian functions with FWHM’s
Γ1 and Γ2 respectively. Show that DR is also a Lorentzian and find its
FWHM.

(b) Do the same if D1 and D2 are Gaussian and Γ1 and Γ2 are the rms
deviations.

(c) (i) Find the FWHM of a Gaussian with rms width Γ.

(ii) Find the rms width of a Lorentzian with FWHM Γ.

Solution

We make use of the convolution theorem, namely, that convolution in fre-
quency domain is equivalent to multiplication in time domain.

(a) Two Lorentzians. Their normalized form is

Di(ω) =
1

π

Γi/2

ω2 + (Γi/2)
2

Fourier transform of Di(ω) is

di(t) = e−Γit/2

Therefore

DR(ω) = Di(ω)⊗D2(ω)
FT⇐⇒ dR(t) = d1(t)×d2(t) = e−(Γ1+Γ2)|t|/2

which shows that DR is also Lorentzian with FWHM of Γ = Γ1 + Γ2.

(b) Two Gaussians. Their normalized form is

Di(ω) =
1√
2πΓ2

i

e−ω2/2Γ2
i
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Fourier transform of Di(ω) is

di(t) = e−Γ2
i t

2/2

Therefore

DR(ω) = D1(ω)⊗D2(ω)
FT⇐⇒ dR(t) = d1(t)×d2(t) = e−(Γ2

1+Γ2
2)t

2/2

which shows that DR is also a Gaussian function with rms width of
Γ =

√
Γ2
1 + Γ2

2.

(c) (i) FWHM of a Gaussian of rms width Γ

A general Gaussian of amplitude A and width Γ has the form

D(ω) = Ae−ω2/2Γ2

The maximum of this function is A and occurs at ω = 0. Therefore the
half maximum occurs at ω = ω1/2 such that

Ae−ω2
1/2/2Γ

2

=
A

2

which gives

ω2
1/2 = 2Γ2 ln 2 =⇒ ω1/2 = ±Γ

√
2 ln 2

Therefore

FWHM of Gaussian = 2Γ
√
2 ln 2

(ii) RMS width of a Lorentzian with FWHM Γ

A general Lorentzian of amplitude A and FWHM Γ has the form

D(ω) = A
(Γ/2)2

ω2 + (Γ/2)
2

The rms deviation is defined as

rms ≡
√
〈 (ω − 〈ω〉)2〉 =

√
〈ω2〉 − 〈ω〉2

For the Lorentzian, 〈ω〉 = 0, and

〈ω2〉 = A

(
Γ

2

)2 ∫ ∞

−∞
dω′ ω′2

ω′2 + (Γ/2)
2 −→ ∞

Therefore the rms width of Lorentzian is undefined.

Physically this means that the Lorentzian function remains finite even
when one goes far off resonance (its center frequency).



Chapter 10

Spectroscopy

L
asers have impacted our lives in a countless number of ways. Today
they are found everywhere—in computer hard disk drives, CD players,

grocery store scanners, and in the surgeon’s kit. In research laboratories,
almost everyone uses lasers for one reason or another. However, the greatest
impact of lasers in physics has been in high-resolution spectroscopy of atoms
and molecules. To see this, consider how spectroscopy was done before the
advent of lasers. You would use a high-energy light source to excite all the
transitions in the system, and then study the resulting emission “spectrum”
as the atoms relaxed back to their ground states. This is like studying the
modes of vibration of a box by hitting it with a sledgehammer and then
separating the resulting sound into its different frequency components. A
more gentle way of doing this would be to excite the system with a tuning
fork of a given frequency. Then by changing the frequency of the tuning
fork, one could build up the spectrum of the system. This is how you do
laser spectroscopy with a tunable laser—you study the absorption of light
by the atoms as you tune the laser frequency, and build up a resonance
curve as you go across an atomic absorption.

In order to be able to do such high resolution laser spectroscopy, two things
have to be satisfied. First, the atomic resonance should not be artificially
broadened, e.g. due to Doppler broadening. Even with atoms at room tem-
perature, the Doppler width can be 100 times the natural width, and can
prevent closely spaced levels from being resolved. The second requirement
is that the tunable laser should have a narrow “linewidth.” The linewidth
of the laser, or its frequency uncertainty, is like the width of the pen used
to draw a curve on a sheet of paper. Obviously, you cannot draw a very fine
curve if you have a broad pen. In this chapter, we will see how to narrow
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the linewidth of a diode laser in order to make it useful for spectroscopy.
In addition, we will study techniques that make the spectrum Doppler-free.
We will also study the phenomenon of nonlinear magneto-optic rotation,
which has important applications in precision measurements.
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A. Alkali atoms

The advent of low-cost diode lasers has revolutionized research involving
atom–photon interactions. This is because the strongest transitions of most
alkali atoms—the mainstay of such experiments—are accessible using diode
lasers. In addition, all these alkali atoms (except Li) are sufficiently non-
reactive with glass and have high enough vapor pressure at room temper-
ature to allow vapor cells to be used for spectroscopy. In this section, we
review the relevant properties of alkali atoms.

The alkali atoms belong to the first group of the periodic table: they are
lithium, sodium, potassium, rubidium, cesium, and francium (radioactive).
All of them are hydrogen-like in the sense that they have one valence elec-
tron, and inner ones just contribute to a core. Thus they have a ground
state of 2S1/2. The first excited state corresponds to the valence electron
being excited to a P orbital. Due to spin-orbit interaction this state splits
into two states—2P1/2 and 2P3/2—with the energy difference called the
fine structure splitting. The 2S1/2 → 2P1/2 transition is called the D1 line,
while the 2S1/2 → 2P3/2 transition is called the D2 line. Due to hyperfine
interaction with the nucleus, the ground 2S1/2 state and the excited 2P1/2

state further split into two levels each, while the excited 2P3/2 state splits
into three or four levels depending on the nuclear spin.

The relevant properties of the alkali atoms are listed in Table 10.1 below.
It is seen that the D lines∗ of all atoms except Na are accessible with diode
lasers.

Table 10.1

I
S1/2 P1/2 P3/2

F F
λ Γ/2π

F
λ Γ/2π

(nm) (MHz) (nm) (MHz)

6Li 1 1

2
, 3

2

1

2
, 3

2
671 5.9 1

2
, 3

2
, 5

2
671 5.9

7Li 3/2 1, 2 1, 2 671 5.9 0, 1, 2, 3 671 5.9

23Na 3/2 1, 2 1, 2 589 9.8 0, 1, 2, 3 589 9.8

39K 3/2 1, 2 1, 2 770 6.0 0, 1, 2, 3 767 6.0

41K 3/2 1, 2 1, 2 770 6.0 0, 1, 2, 3 767 6.0

] 85Rb 5/2 2, 3 2, 3 795 5.8 1, 2, 3, 4 780 6.1

87Rb 3/2 1, 2 1, 2 795 5.8 0, 1, 2, 3 780 6.1

133Cs 7/2 3, 4 3, 4 894 4.6 2, 3, 4, 5 852 5.2

∗The latest technique to measure transition frequencies is by using a femtosecond fre-
quency comb, which is detailed in Appendix D, “Frequency Comb.”
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To see the energy levels graphically, we show the low lying levels of the two
isotopes of Li in Fig. 10.1. Li is unique in many ways, one of which is that
the hyperfine levels in the P3/2 state are inverted, with the smallest F value
being the highest in energy. This is opposite of what is seen in other alkali
atoms.

Figure 10.1: Energy levels of Li. Shown alongside each hyperfine level
(labeled by its F value) is the shift in MHz from the unperturbed state.
IS is isotope shift and FS is fine structure interval.
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B. Experimental tools

In this section, we will see the different experimental tools used in a modern
atomic and optical physics lab.

1. Diode laser

A commercial diode laser of the kind that is used in CD players has a
linewidth of the order of a few GHz. But to be useful for atomic spec-
troscopy where transitions have linewidths of a few MHz, the laser linewidth
should be reduced below 1 MHz. This is achieved by using optical feed-
back from a diffraction grating—called the Littrow configuration. This
also serves the purpose of making the laser tunable by changing the angle
of the grating. The grating is mounted on a piezo-electric transducer (PZT)
so that the angle can be changed electronically.

Figure 10.2: Diode laser stabilization in Littrow configuration. Optical
feedback from a grating is used to reduce the linewidth of the laser. The
grating is mounted on a piezoelectric transducers (PZT) to enable elec-
tronic tunning of the wavelength. This configuration is called an external
cavity diode laser (ECDL).

The configuration, shown schematically in Fig. 10.2, is arranged so that
the −1th order diffraction from the grating is fed back to the laser, while
the specular reflection from the grating is the output. From the grating
equation we have

2d sin θ = mλ

where d is the spacing between successive lines of the grating, and θ is
the angle of the mth order diffraction. Since the specular reflection is the
output beam, it is convenient to have θ close to 45◦. This means that the
grating used for accessing the D lines of Li (670 nm) has 2400 lines/mm,
while the grating used for the D lines of K, Rb, and Cs (780–900 nm)
has 1800 lines/mm. The power available after optical feedback is usually
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about 70% of the open loop power. Thus the linewidth is reduced by
a factor of 1000 but the loss in power is only 30%, showing that this is
not wavelength selection (as for a grating used with a white light source)
but actual reduction in wavelength uncertainty of the laser. In effect, the
grating along with the back facet of the diode forms a second lasing cavity—
which is why this configuration is called an external cavity diode laser
(ECDL)—and the longer cavity results in a smaller linewidth.

2. Lock-in amplifier

For many experiments, the laser needs to be locked to a resonance peak.
The standard technique for doing this is to first do FM modulation of the
laser frequency and then do lock-in detection at the modulation frequency.
The laser frequency is modulated by varying the injection current into the
diode laser. The signal is demodulated using a lock-in amplifier—consisting
of a mixer, an amplifier, and a low-pass filter. It can be shown that output
of the lock-in amplifier is the first derivative of the resonance curve. Thus
if the signal is a peak, then the output of the lock-in amplifier (called the
error signal) is dispersive. For example, if the signal is a Lorentzian peak
with unit linewidth

L (x) =
1

x2 + 1/4

then its derivative is

dL

dx
= − 2x

(x2 + 1/4)2

Figure 10.3: Error signal for locking the laser to a peak. The dispersive
error signal is the output of a lock-in amplifier when the laser frequency
is modulated. When fed back to the laser, it locks to the center of the
peak shown in gray.
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This is the form of the error signal, which is shown in Fig. 10.3. If the
signal (with adequate gain) is now fed back to the laser, the frequency of
the laser gets locked to the peak center.

3. Polarizing beam splitter cube — PBS

The polarizing beam splitter cube is an optical element with a coating inside
that is designed to transmit one linear component of polarization and reflect
the orthogonal component—usually p-polarization (plane polarized in the
plane of incidence) is transmitted, while s-polarization (plane polarized
normal to the plane of incidence) is reflected. If the coating is vertical,
then the horizontal component is transmitted while the vertical component
is reflected. This shows a PBS can be used to control the power going into
an experiment—by having a λ/2 waveplate which rotates the polarization
by some angle, the power can be controlled down to 0 since only cos θ times
the total power is transmitted. In addition, the PBS can be used to mix
beams with orthogonal polarizations, or separate a beam into its orthogonal
components.

4. Acousto-optic modulator — AOM

An acoustic-optic modulator is a device that uses traveling sound waves
(usually at radio frequency) in a crystal to diffract a light beam passing
through it. Its most common use in the lab is to shift the frequency of
a laser beam passing through it, but it can also be used to control other
properties of the light such as its intensity, phase, and spatial position.
The mth order diffracted beam emerges at an angle θ that depends on
the wavelength λ of the light relative to the wavelength Λ of sound in the
medium, as follows

sin θ =
mλ

2Λ

Since the light is diffracted by a moving wave, energy-momentum conser-
vation requires that the frequency of the light be increased by that of the
sound wave F

fout → fin +mF

showing that the AOM can be used as a frequency shifter.

The diffraction efficiency depends on the amplitude of the soundwave, which
is in turn determined by the intensity of the RF driver used to launch the
wave in the crystal. Thus the properties of the light beam can be controlled
by controlling the amplitude, phase, and frequency of the RF driver. In
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addition, the deflection angle θ is determined by the frequency of the sound
waves, so the light beam can be spatially modulated by varying the driver
frequency.

For some applications, it is necessary to get variable frequency shifts with-
out changing the beam direction. This is done by double passing through
the AOM, which means passing through the AOM in both directions. As
shown in Fig. 10.4, directional stability is guaranteed because the spatial
shift in the first pass is reversed during the return. But this means that
the input beam and return beam are exactly counter-propagating—this is
solved by having a λ/4 waveplate after the AOM so that the return beam is
orthogonally polarized and can be separated using a PBS. Double passing
gives twice the frequency shift of the driver.

Figure 10.4: Double passing through an AOM. The λ/4 waveplate en-
sures that the return beam (which is exactly counter-propagating with
the input and has no lateral shift) is orthogonally polarized and can be
separated using a PBS.

The typical frequency shift from an AOM is about 100 MHz, and requires
a few watts of RF drive power.

5. Faraday isolator

The stabilized diode laser used in spectroscopy can be destabilized if there
is optical feedback from the elements in the experimental set up. This is
prevented by having a Faraday isolator immediately after the laser. The
Faraday isolator first has a polarizer which sets the polarization of the in-
coming light to be linear along some axis. This is followed by a crystal
where a strong magnetic field along with the Faraday effect is used to ro-
tate the plane of polarization by 45◦. Any return beam undergoes the same
rotation to make the total rotation equal to 90◦, i.e. orthogonal in polar-
ization to the incoming beam. This crossed polarization is then blocked
by the input polarizer, thus preventing any light from feeding back to the
laser. The typical isolation provided by a single isolator is 30 dB. If more
isolation is needed, multiple isolators can be used.
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C. Doppler-free techniques

1. Saturated absorption spectroscopy — SAS

When spectroscopy is done in a room temperature vapor cell, we have to
consider the effect of Doppler broadening. From Chapter 9,“Lineshapes,”
we know that this is an example of inhomogeneous broadening, and the
Maxwell–Boltzmann velocity distribution along with the first-order Doppler
effect results in an absorption profile with a Gaussian lineshape. To give an
idea of the deleterious effect of this broadening, consider that the Doppler
width for 87Rb atoms at room temperature on the D2 line at 780 nm [shown
in Fig. 10.6(a)] is about 600 MHz. But the natural linewidth of individual
hyperfine transitions is only 6 MHz (with Lorentzian lineshape because this
is an example of homogeneous broadening).

Figure 10.5: Experimental schematic for saturated absorption spec-
troscopy in a vapor cell. Two identical probe beams are generated using
the thick beam splitters—one has the counter-propagating pump beam
for the SAS, while the other is used for Doppler correction.

The standard method to resolve such a narrow transition embedded in a
broad background is to use the technique of saturated absorption spec-
troscopy (SAS). The basic idea of an experiment to do SAS is shown
schematically in Fig. 10.5. In addition to the probe beam, there is a much
stronger pump beam that counter-propagates with respect to the probe,
and plays the role of saturating the transition. Since the probability of
transition is nonlinear in the light intensity, the probe shows decreased
absorption when the pump is also resonant with the same transition. By
counter-propagating the two beams, we ensure that the two beams are si-
multaneously resonant with zero-velocity atoms. The consequence of this
on the probe spectrum is shown in Fig. 10.6. Probe absorption in the ab-
sence of the pump shows a broad Gaussian curve, as shown in Fig. 10.6(a).
But a narrow dip appears at line center when the pump is turned on, as seen
in Fig. 10.6(b). If the second probe beam is used to subtract the Doppler
profile, then we get a single Lorentzian peak on a flat background in probe
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transmission. This is shown in Fig. 10.6(c).
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Figure 10.6: Saturated absorption spectrum. (a) Doppler broadened
probe absorption spectrum (calculated for 87Rb atoms at 300 K on the
D2 line at 780 nm) with counter-propagating pump beam off. (b) Dip in
the center when the pump beam is turned on. (c) Single Lorentzian peak
in probe transmission after the Doppler profile is subtracted.

2. Crossover resonances

Crossover resonances occur because of interaction of the pump-probe beams
with non-zero velocity atoms, but with velocities such that they are within
the Maxwell–Boltzmann distribution. Let us first consider the case of two
excited states |e1〉 and |e2〉 coupled to the same ground state |g〉, as shown
in Fig. 10.7(a). Consider that the laser frequency is exactly between the
two excited states, and a velocity group such that the Doppler shift is equal
to half the difference between the two excited states. For atoms with this
velocity moving towards the probe beam and away from the pump beam,
the Doppler shift is such that the probe is resonant with the |g〉 → |e2〉
transition while the pump beam is resonant with the |g〉 → |e1〉 transition.
Saturation by the pump beam thus causes a peak to appear in the probe
transmission spectrum. This peak is called an excited state crossover
resonance, and is a spurious peak that appears when the laser frequency
is exactly between two real peaks. The peak also has a contribution from
atoms with the same velocity but moving in the opposite direction—the
probe beam is now resonant with |g〉 → |e1〉 transition while the pump
beam is resonant with the |g〉 → |e2〉 transition. This shows that two veloc-
ity groups contribute to each crossover resonance compared to one (zero-
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velocity) group for the real peaks. Thus the crossover resonances (which
appear between every pair of real peaks) are generally more prominent than
the real peaks.

Figure 10.7: Crossover Resonances: (a) Excited state crossover resonance
occurs when the laser frequency is midway between two excited states.
(b) Ground state crossover resonance when the laser frequency is midway
between two ground states coupling to the same excited state.

We next consider the phenomenon of ground state crossover resonances.
These appear when two ground states |g1〉 and |g2〉 are coupled to the same
excited state |e〉, as shown in Fig. 10.7(b). We again consider that the laser
frequency is exactly between the two transition frequencies, and a velocity
group whose Doppler shift is equal to half the separation between the two
ground states. Thus for atoms moving with this velocity towards the probe
beam and away from the pump beam, the probe is resonant with the |g1〉 →
|e〉 transition while the pump is resonant with the |g2〉 → |e〉 transition. The
strong pump now causes optical pumping which increases population in the
|g1〉 state. Thus the probe shows enhanced absorption, which is opposite
to the enhanced transparency seen in the excited state crossover resonance.
Hence these resonances appear as negative peaks in the probe transmission
spectrum. As with the excited state crossover resonance, a second velocity
group moving in the opposite direction also contributes to the peak but
with the roles of the pump and probe beams being interchanged. This
again makes the resonance more prominent.

As an example of these two kinds of crossover resonances, we consider the
SAS spectrum for the D1 line in 7Li. Both the ground state and the excited
state have two hyperfine levels each, with F = 1 and F = 2. The excited
state hyperfine interval is 92 MHz, and has an excited state crossover res-
onance because the velocity required to get a Doppler shift of 46 MHz is
only 31 m/s. The ground state hyperfine interval is 803 MHz, which implies
that a velocity of 269 m/s will give the required Doppler shift. This is well
within the velocity profile of Li vapor because it is a light atom, and the
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spectrum shows a ground state crossover resonance. Thus the spectrum
shown in Fig. 10.8 hence has three sets of peaks. Each set comprises of
three peaks, with the excited state crossover resonance in between labeled
as Fg → Fe = (1, 2). The middle set is the ground state crossover resonance
labeled as Fg = (1, 2) → Fe, and is inverted as expected.

Figure 10.8: Doppler-corrected SAS spectrum for the D1 line in 7Li. The
spectrum is calculated based on experimental data used for getting the
relative heights of the peaks. The spectrum shows 3 sets of peaks. The
first and third sets show the excited state crossover resonance in between
the two real peaks. The middle set is a ground state crossover resonance,
which is inverted and more prominent as explained in the text.

The spectrum shown in the figure is based on experimental data, and the ex-
perimental spectrum is used to get the relative heights of the peaks. Though
Li is the simplest alkali atom, and many ab initio theoretical calculations
have been done on it, experimentally it is the most challenging. This is
because of its high reactivity with all kinds of glasses which precludes the
use of vapor cells. Therefore the SAS experiments were done in a special Li
spectrometer consisting of a pyrex cell, connected to a resistively heated Li
source and a turbomolecular pump to maintain pressure below 10−7 torr.

3. Eliminating crossover resonances using
copropagating SAS

Crossover resonances are generally not a problem in spectroscopy. But they
can become an issue if the energy levels are spaced by a few linewidths—
they then swamp the real peaks and prevent them from being resolved.
One way to eliminate them is to use pump and probe beams that are
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copropagating instead of counter-propagating as in normal SAS. But the
price one has to pay for this is that two independent lasers are needed. The
experimental schematic is shown in Fig. 10.9. The spectrum is obtained by
scanning only the pump laser while keeping the probe laser locked. This has
the additional advantage of making the spectrum Doppler-free. In effect,
the locked probe talks to one velocity group (primarily the zero-velocity
group), and the signal remains flat until the pump also comes into resonance
with the same velocity group. Thus there are no crossover resonances in
between the real peaks.

Figure 10.9: Experimental schematic for copropagating SAS. The setup
uses two lasers, with the probe locked (using SAS) and the pump scan-
ning.

To see the advantages of this scheme, we compare the spectra obtained
with the two techniques for the Fg = 2 → Fe transitions in the 87Rb D2

line. We first consider the spectrum taken with normal SAS shown in Fig.
10.10(a). As expected, there are six peaks—three real peaks corresponding
to the Fe = 1, 2, 3 hyperfine levels of the excited state; and three spurious
crossover resonances that are more prominent. In addition to the usual
saturation effects, probe transparency is caused by optical pumping into
the Fg = 1 ground hyperfine level for open transitions, i.e. those involving
the Fe = 1, 2 levels of the excited state. The linewidth of the peaks is
about 12 MHz, compared to the natural linewidth of 6 MHz. This increase
is typical in SAS and arises due to a misalignment angle between the pump
and probe beams (which causes non-zero-velocity atoms to contribute), and
power broadening by the pump beam.

Now let us consider the spectrum as shown in Fig. 10.10(b) taken with
the copropagating configuration. The probe beam is locked to the Fg =
2 → Fe = 3 transition, while the pump beam is scanned across the set of
Fg = 2 → Fe = 1, 2, 3 transitions. Since the probe is locked, its transmitted
signal corresponds primarily to absorption by zero-velocity atoms making
a transition to the Fe = 3 level. The signal remains flat (or Doppler-free)
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Figure 10.10: Comparison of experimental spectra in 87Rb for the D2 line.
(a) Spectrum taken with normal SAS, showing crossover resonances and
requiring Doppler correction. (b) Spectrum taken with the copropagating
SAS technique, showing no crossover resonances and being inherently
Doppler-free. There is one spurious peak (due to interaction with non-
zero-velocity atoms) at −157 MHz which is very small; the others lie
outside the spectrum as explained in the text.

until the pump also comes into resonance with transition for the same zero-
velocity atoms. Thus there are three peaks at the location of the hyperfine
levels, with no crossover resonances in between. The hyperfine peaks are lo-
cated at −423.6 MHz, −266.7 MHz, and 0, all measured with respect to the
frequency of the located probe laser. The primary cause for probe trans-
parency is the phenomenon of electromagnetically induced transparency
(EIT) in this V-type system, as discussed in Chapter 8, “Coherence.” In
addition, there are effects of saturation and optical pumping as in normal
SAS, but these are less important than EIT.

To see the effect of non-zero-velocity atoms on the spectrum, we note that
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there will be two additional velocity classes that absorb from the locked
probe beam—both moving in the same direction as the probe, but with
velocities such that one drives transition to the Fg = 2 level (266.7 MHz
lower), and the second to the Fg = 1 level (423.6 MHz lower). Each of
these will cause three additional transparency peaks from the mechanisms
discussed above. The first velocity class (moving at 208 m/s) will cause
peaks at −156.9 MHz, 0, 266.7 MHz, i.e. a set of peaks shifted up by 266.7
MHz. The second velocity class (moving at 330 m/s) will cause peaks at 0,
156.9 MHz, 423.6 MHz, i.e. a set of peaks shifted up by 423.6 MHz. Thus
there will be seven peaks in all—three real and four spurious. However,
only the peak at −156.9 MHz will appear within the spectrum (caused by
the probe beam driving the Fg = 2 → Fe = 2 transition and the pump
driving the Fg = 2 → Fe = 1 transition), the other three spurious peaks
will be outside the spectrum to the right hand side. This is indeed what is
observed in the experimental spectrum shown in Fig. 10.10(b).

4. Two-photon Doppler-free

A two-photon transition can be made inherently Doppler-free by having
the two photons come from two beams that are counter-propagating with
respect to each other. Since only zero-velocity atoms interact with both
beams, the resulting spectrum is not Doppler broadened. As an example, we
consider the S1/2 → D5/2 transition at 778 nm in 87Rb. The experimental
schematic to study this is shown in Fig. 10.11(a). The cell has to be heated
to increase the number density of atoms and get a good signal. A sample
spectrum of the Fg = 2 → Fe hyperfine transition is shown in Fig. 10.11(b).
The four peaks corresponding to the four hyperfine levels in the excited
state are well resolved. Because the two beams have to be perfectly counter-
propagating to get a good spectrum, the diode laser is extremely sensitive to
feedback, which makes the spectrum unstable. Therefore, the experiment
requires the use of a Faraday isolator in front of the laser.
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Figure 10.11: Two-photon spectroscopy. (a) Experimental setup showing
the Faraday isolator to prevent feedback into the laser. (b) Experimental
spectrum for the Fg = 2 → Fe hyperfine component of the S1/2 → D5/2

transition in 87Rb.
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D. Nonlinear magneto-optic rotation —NMOR

The well-known phenomenon of the rotation of the plane of polarization
of near resonant light passing through atomic vapor in the presence of a
longitudinal B field is called magneto-optic rotation (MOR) or the Fara-
day effect. It arises due to the birefringence in the medium induced by
the B field. This phenomenon of MOR shows nonlinear effects when the
light is sufficiently strong, as can be produced by a laser for example. In
the simplest manifestation of nonlinear magneto-optic rotation (NMOR),
the strong light field aligns the atoms by inducing (through optical pump-
ing) Δm = 2 coherences among the ground state magnetic sublevels. The
aligned atoms undergo Larmor precession about the longitudinal B field,
and cause additional rotation due to the precessed birefringence axis. The
effect is nonlinear because the degree of optical alignment depends on the
light intensity. The study of NMOR is important because it has impor-
tant applications such as sensitive magnetometry, search for a permanent
electric dipole moment, precision measurements, and magnetic resonance
imaging (MRI).

The mechanism for the origin of NMOR shows that the width of the reso-
nance is going to be limited by the decoherence time of the atomic align-
ment. If the experiments are done in a vapor cell at room temperature,
then the mean free path between collisions is several orders of magnitude
larger than the cell size. Thus the coherence is destroyed by spin-exchange
collisions not between atoms but with the cell walls. It has been known for
a long time that the use of paraffin coating on the cell walls reduces the
ground-state depolarization rate and enhances the optical pumping signals.
Therefore these experiments are typically done using paraffin-coated vapor
cells.

Figure 10.12: Experimental schematic for observing NMOR. The vapor
cell is spherical in shape, has paraffin coating on the walls, is placed in a
three-layer magnetic shield to reduce stray fields, and is in the center of
a solenoid used to apply a longitudinal magnetic field.

A typical experimental schematic for studying NMOR (on the D2 line of Cs)
is shown in Fig. 10.12. Because the experiments use very small magnetic
fields it is important to shield Earth’s field and other stray fields. This
is achieved by placing the cell inside a three-layer magnetic shield made
of μ-metal, which reduces the ambient fields to less than 0.1 mG. The
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vapor cell with paraffin coating on the walls is spherical in shape so that
the recoil velocity after each wall collision is in a random direction. It
is kept in the middle of a solenoidal coil that allows the application of a
uniform longitudinal magnetic field. The probe beam is chosen to have
linear polarization at 45◦ with respect to the horizontal, and separated into
its horizontal and vertical components using a PBS after the cell. The two
intensities Ix and Iy are measured using photodiodes (PD1 and PD2), and
the rotation angle calculated as

Φ =
1

2
sin−1 Ix − Iy

Ix + Iy
≈ Ix − Iy

2(Ix + Iy)

where the approximate result is valid when the rotation angle is small (of
the order of a few mrad in these experiments).

Figure 10.13: NMOR resonance in the D2 line of 133Cs as a function of
applied magnetic field. Open circles are the experimental data, while the
solid line is the curve-fit using Eq. 10.2 in the text.

The observed NMOR resonance on the Fg = 4 ground hyperfine level of
133Cs is shown in Fig. 10.13. To understand the lineshape, consider that the
origin of the NMOR effect is the creation of a ground state Δm = 2 coher-
ence, and the precession of this coherence in the magnetic field. From Eq.
(4.9) of Chapter 4, we know that the Zeeman shift of an |F,m〉 sublevel in a
magnetic field B◦ ẑ is gFμBmB◦. Hence the Δm = 2 alignment/coherence
will precess at gFμB ΔmB◦/�, or a frequency of 2ωL when we define the
Larmor precession frequency as

ωL = gFμBB◦/�

If the alignment is assumed to decohere exponentially at a rate Γr/2, then
the instantaneous rotation angle is

φnmor = Ce−Γrt/2 sin (2ωLt)
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where C is a proportionality constant that depends on the degree of align-
ment. What we observe is the time-averaged rotation, which is the integral
of the instantaneous rotation

Φnmor ≡ 〈φnmor〉 = C

∫ ∞

0

e−Γrt/2 sin (2ωLt) dt

This can be derived as

Φnmor = C
2ωL

(2ωL)2 + Γ2
r/4

(10.1)

Thus, the lineshape of the NMOR resonance is dispersive and centered at
ωL = 0 (or equivalently at B◦ = 0). If we include a linear term to account
for normal MOR effect, then the combined lineshape for the rotation is

Φtotal = AωL + C
2ωL

(2ωL)2 + Γ2
r/4

(10.2)

The experimental data, shown with open circles in Fig. 10.13, bear out this
expectation. The solid line is a fit to the above equation, and describes the
data well.

1. Chopped NMOR

Since NMOR has important applications in precision measurements, any
method to improve the signal-to-noise ratio (SNR) is advantageous. One
way to improve SNR is to chop the laser beam on and off, and then do lock-
in detection at the chopping frequency. The basic idea in this technique
is that of a repeated Ramsey SOF measurement of the Larmor precession
frequency. During the on time of the beam, the atoms are optically pumped
into the Δm = 2 coherence of the ground state. During the off time,
they freely precess around the B field at the Larmor frequency. If the on-
off modulation frequency matches the Larmor precession frequency, then
the atoms are realigned exactly when the light field comes back on thus
resonantly enhancing the optical pumping process. The process continuous
again for the next on-off cycle, so this is like a repeated Ramsey method.
The resonance actually appears when the modulation frequency is equal
to 2× the Larmor frequency—the factor of 2 appears because the atomic
alignment has two-fold symmetry.

To get the lineshape with the chopped NMOR technique, we look at the
effect of chopping on the NMOR signal given in Eq. (10.1). To first order,
the effect of the chopping is to modulate the atomic alignment at this
frequency. Thus, if the chopping frequency is ωm then the constant C
becomes C cosωmt. The lock-in amplifier demodulates this signal at ωm to
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get the in-phase and out-of-phase quadratures. It is straightforward to see
that the time-averaged rotation angle for the in-phase component is

Φip = C

[
D(2ωL)

2
+

D(2ωL − ωm)

4
+

D(2ωL + ωm)

4

]
where

D(x) =
x

x2 + Γ2
r/4

is the same dispersive function that appeared in Eq. (10.1). Thus the in-
phase rotation for chopped NMOR has two additional peaks compared to
normal NMOR, with the same dispersive lineshape but centered at ωL =
±ωm/2 and having half the amplitude.

A similar analysis shows that the out-of-phase rotation angle is given by

Φop = C

[
−L (2ωL − ωm)

4
+

L (2ωL + ωm)

4

]
where

L (x) =
Γr

x2 + Γ2
r/4

is a Lorentzian function. Thus we see that the out-of-phase component has
two Lorentzian peaks (with opposite signs) centered at ωL = ±ωm/2. The
linewidth of each peak is Γr determined by the same decoherence rate as far
as normal NMOR. Hence the advantage of the chopped NMOR technique
is that the out-of-phase component gives Lorentzian peaks and at non-zero
values of the B field. This results in better SNR because noise at higher fre-
quencies is generally smaller. In addition, the Lorentzian lineshape makes
it easier to determine the peak center.

The experimental spectra confirm the above analysis. Shown in Fig. 10.14
are the above lineshapes, calculated to match experimental data. As seen,
the in-phase component has the same linear variation as normal NMOR
(due to the MOR effect); there is no linear part for the out-of-phase component—
another advantage of the chopped NMOR technique.
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Figure 10.14: Chopped NMOR resonance demodulated at fm showing
the in-phase and out-of-phase components. The lineshapes and locations
are derived in the text.
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E. Problems

1. Diode laser linewidth

The linewidth of a diode laser after feedback stabilization is of the order of
1 MHz. Design an experimental scheme to measure this linewidth.

Solution

The linewidth of the laser can be measured by interfering two beams that
have a phase difference much greater than that corresponding to the coher-
ence time, and taking a Fourier transition of the beat (interference) signal.
This is because the phase of the two such beams will be uncorrelated, and
the beat sigal will reflect the phase uncertainty in the laser. The beat sig-
nal of two perfectly correlated beams is a pure sine wave, which becomes
increasingly fuzzy as the correlation decreases.

If the linewidth is 1 MHz, then the coherence time is

τc =
1

2π × 1 MHz
= 1.6× 10−7 s

The corresponding phase difference is

Δφ = ωτc =
2π

λ
cτc

which implies a path length difference in the interferometer of

Δ� =
λ

2π
Δφ = cτc = 48 m

Such a large path difference cannot be produced in the lab in a normal
interferometer except if one of the arms has an optical fiber of sufficient
length.

Therefore, the experimental scheme consists of the following steps.

(i) The laser beam is split into two parts.

(ii) The first beam has an AOM in its path so that it has a known fre-
quency offset of 20 MHz. The second beam is sent through an optical
fiber that is a few kms long to get the required phase difference.

(iii) The two beams are beat on a fast photodiode with response time fast
enough to measure a frequency of 20 MHz (of the order of 1 ns).

(iv) A Fourier transform of the photodiode time-domain signal is taken.
The Fourier transform will be centered at 20 MHz and have a width
equal to the linewidth of the laser.
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2. Vapor cells

(a) If the lifetime of the P3/2 state of Na is 16.3 ns, what is the natural
linewidth (in Hz) of the D2 line?

(b) If the wavelength of this line is 589 nm, what is the corresponding
saturation intensity (in mW/cm2)?

(c) If you make a vapor cell of Na for probe-absorption spectroscopy that is
maintained at 100◦C, what is the one-dimensional rms velocity? What
is the Gaussian width (FWHM) of the probe spectrum corresponding
to this velocity distribution?

(d) The typical vapor pressure inside the above cell is 0.1 μtorr.

(i) What is the mean free path between collisions if the atomic size
is 1 Å?

(ii) For a cell length of 5 cm, what is the percentage absorption for a
probe beam?

Solution

(a) The linewidth is related to the lifetime as

Γ =
1

τ
=⇒ Γ

2π
=

1

2πτ
= 9.98 MHz

(b) The saturation intensity is defined as

Is =
�ω3

12πc2
Γ =

hπc

3λ3
Γ = 6.22 mW/cm2

(c) For a probe beam (propagating along z) passing through a vapor cell
containing a gas of atoms of mass M at temperature T , the relevant
velocity distribution is a one-dimensional Maxwell–Boltzmann distribu-
tion given by

f(vz) dvz =

√
M

2πkBT
exp

(
− Mv2z
2kBT

)
dvz

The rms velocity is defined as

vrms ≡
√
〈v2〉 − 〈v〉2

For this distribution, 〈v〉 = 0 and

〈v2〉 =
∫ ∞

−∞
dvz v

2
zf(vz)

=

√
M

2πkBT

∫ ∞

−∞
dvz v

2
z exp

(
− Mv2z
2kBT

)
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Substituting

x2 =
Mv2z
2kBT

gives

2xdx =

(
M

2kBT

)
2vzdvz =⇒ dvz =

2kBTx

Mvz
dx

Therefore

〈v2〉 =
√

M

2πkBT

(
2kBT

M

)∫ ∞

−∞
dxx vze

−x2

=

√
M

2πkBT

(
2kBT

M

)∫ ∞

−∞
dxx2

√
2kBT

M
e−x2

=
2kBT

M

1√
π

∫ ∞

−∞
dxx2 e−x2

=
kBT

M
using

∫ ∞

−∞
x2 e−x2

dx =

√
π

2

The atomic mass of Na is 23 amu, so at a temperature of T = 100◦C
= 373 K, the rms velocity is

vrms =

√
kBT

M
= 367.2 m/s

Since the Doppler shift for an atom with velocity v is v/λ, the resultant
distribution will be a Gaussian of the form (with center frequency ω◦)

D(ω) = A exp

[
− (ω − ω◦)

2

2ω2
D

]
where ωD is the rms width related to the rms velocity as

ωD = 2π
vrms

λ◦
The maximum of this function is A and occurs at ω = ω◦. Therefore
the half maximum occurs at ω1/2 = (ω − ω◦) such that

A exp

[
−
ω2
1/2

2ω2
D

]
=

A

2

which gives

ω2
1/2 = 2ω2

D ln 2 =⇒ ω1/2 = ±ωD

√
2 ln 2

Therefore the linewidth of the probe profile is

FWHM of Gaussian = 2
ωD

2π

√
2 ln 2 = 2

vrms

λ◦

√
2 ln 2 = 1.47 GHz
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(d) (i) The mean free path is

Λ =
kBT√
2πd2P

where d is the size of the atom, and P is the pressure.

Using values of size 1 Å and pressure 0.1 μtorr, we get

Λ = 8698 m

showing that it is orders-of-magnitude larger than the typical cell size.

(ii) The intensity after the cell is related to the incident intensity as

Ic = I◦e−OD

where OD is the optical density defined as

OD = Nσ�

Here N is atomic density inside the cell, � is the length of the cell, and σ
is the scattering cross-section. The scattering cross-section at intensity
I and detuning δ is related to the on-resonance scattering cross-section
σ◦ as

σ =
σ◦

1 + (2δ/Γ)2 + I/Is

Therefore at low-intensity and on resonance, σ = σ◦.

From the definition of the cross-section, it is

σ =
Scattering rate

Incident photon flux
=

Rsc

I/�ω

Since the saturation intensity is defined as

Rsc =
Γ

2
when I = Is

we get

σ◦ =
�ωΓ

2Is
=

3λ2

2π

For a pressure of 0.1 μtorr

N =
P

kBT
= 9.6× 107 atoms/cc

Therefore for a cell length of 5 cm, the optical density is

OD = Nσ◦� = 0.795

and the percentage absorption is

100
Ic
I◦

= 100 e−OD = 45.2%





Chapter 11

Cooling and Trapping

S
o far we have seen how to address the internal degrees of freedom of an
atom. Now we will see how to control the external degrees of freedom of

an atom—its position and momentum—both with and without light. When
light is involved, the study is called “laser cooling and trapping.” This is
one of the most active areas of research in AMO physics, especially after
the observation of Bose–Einstein condensation (BEC) in 1995 in a dilute
vapor of Rb atoms.

In this chapter, we will discuss the two kinds of forces of near-resonant
light on atoms—the spontaneous or scattering force, which is used for
laser cooling; and the stimulated or dipole force, which is a conservative
force and hence can be derived from a potential, with the potential being
proportional to the light intensity. An atom in an optical lattice experi-
ences a periodic potential, akin to the periodic potential experienced by
electrons in a crystalline lattice. Hence cold atoms in an optical lattice
realize the kind of Hamiltonians normally associated with condensed mat-
ter systems; in effect they emulate a quantum many body system. Such
quantum emulation promises not only the resolution of many long-standing
puzzles in condensed matter physics (e.g. high Tc superconductivity), but
also provides new opportunities to realize quantum states that are not seen
in conventional systems such as solids. In addition, we will see how the
dipole force can be used in optical tweezers—a tool that has important ap-
plications in biology and medicine. Finally, we will discuss ion traps which
have wide-ranging applications in mass measurements, atomic clocks, and
quantum computation.

327
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A. Spontaneous force

Laser cooling of neutral atoms, first proposed by Ted Hänsch and Art
Schawlow in 1975, uses the spontaneous force to cool an atomic cloud. The
force arises because each photon carries a momentum of �k which, by mo-
mentum conservation, gets transferred to the atom each time it absorbs or
emits a photon. The momentum transfer is in the direction of the laser
beam for absorption, and in a random direction for emission. Thus, after
n absorption-emission cycles, the average momentum transferred is n�k in
the direction of the laser beam, because the average for the emission cy-
cles is zero. The random nature of the spontaneous emission process is
important for laser cooling because the entropy of the atomic system has
to be decreased to achieve cooling, and this decrease in entropy has to be
compensated by an increase in entropy somewhere, the somewhere being
the photon field in this case. In addition, the irreversibility of spontaneous
emission is important in defining a thermodynamic direction to the cooling
process.

1. Doppler cooling

The simplest form of laser cooling is called Doppler cooling. To understand
it, let us first consider it in one dimension (1D). Imagine a simple case
where the atom has just two states |g〉 and |e〉 with a transition frequency
ω◦, as shown in Fig. 11.1. Now consider that the atom is bombarded with
identical laser beams from the left and the right sides, both of which are
detuned below resonance. If the atom is stationary, Fig. 11.1(a) shows that
the scattering rate (and hence the force) of the two laser beams is equal.
However, if an atom is moving to the right with a small velocity v, then the
laser beam on the right is Doppler shifted closer to resonance compared to
the laser beam on the left. As a consequence, the atom scatters more pho-
tons from the right beam and feels a force to the left. The opposite happens
for an atom moving to the left—it Doppler shifts the left beam closer to
resonance, scatters more photons from that beam, and thus feels a force to
the right. Therefore the force always opposes the motion, and behaves like a
frictional force that results in cooling. Another way to think about it is that
the detuning below resonance means that the photon has less energy than
is required for the atomic transition, it makes up for this shortfall using
the kinetic energy of the atom, thus reducing the kinetic energy and cool-
ing the atom in the process. Such a configuration of laser beams has been
colorfully called “optical molasses” to highlight the fact that the atom feels
a viscous drag on its motion. And the 1D model considered above can be
readily extended to 3D by having three sets of counter-propagating beams
in the three orthogonal directions.



Spontaneous force 329

Figure 11.1: Laser cooling of atoms in 1D using optical molasses. The
two laser beams are equally detuned below resonance. (a) The two forces
are equal when the atom is stationary; but become unequal when the
atom is moving with a velocity v, because one beam is Doppler-shifted
closer to resonance. (b) Forces due to the left beam, right beam, and
their sum, as a function of velocity, for the configuration shown in (a).
The detuning is chosen to be Δ = −2kv/Γ.

The above analysis can be quantified by considering the force due to each
laser beam, which is just the photon momentum times the scattering rate.
The scattering rate has already been derived in Eq. (6.32) of Chapter 6.
Thus the force due to the left beam for an atom moving with a velocity v
is

F�(v) = +�k
Γ

2

I/Is

1 + I/Is + [2(δ − kv)/Γ]2
(11.1)

where the detuning has been changed to (δ−kv) to transform from the lab
to the atom’s frame. Similarly the force from the right beam is

Fr(v) = −�k
Γ

2

I/Is

1 + I/Is + [2(δ + kv)/Γ]
2

The total force on the atom is the sum of these two forces, which, in the
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limit of low-intensity and small atomic velocity, can be approximated as

F = F� + Fr ≈ 4�k
I

Is

kv(2δ/Γ)

[1 + (2δ/Γ)2]
2

Thus the total force is linear in δ and v, and is a frictional force (∝ −v)
when the detuning is negative.

The two forces as a function of velocity along with their sum are shown
in Fig. 11.1(b). Analysis of the above equation shows that the lowest
temperature—called the Doppler cooling limit—is reached when the de-
tuning δ = −Γ/2, and the temperature reached is

kBTmin = �Γ/2

This is the detuning chosen for the curves shown in the figure. The total
force is clearly linear with a negative slope for small v. In order to give a
numerical estimate of this temperature, for 87Rb atoms cooled on the D2

line, Γ/2π = 6 MHz and Tmin = 140 μK.

Like other alkali atoms, 87Rb also has two hyperfine levels in the ground
state. Cooling is done using the closed Fg = 2 → Fe = 3 transition, closed
because atoms in the excited state can only decay to the Fg = 2 level. Still
there is a finite probability of off-resonant excitation to the Fe = 2 level
(∼ 40 linewidths away so the probability of excitation is very small), from
where atoms can decay to the Fg = 1 level and be lost from the cooling
process. Thus after a while all the atoms get optically pumped to the Fg = 1
level and are lost. To recover them, a second laser beam resonant with the
Fg = 1 → Fe = 2 transition, called the repumping beam, is mixed with
the cooling beam. Because the transition uses the Fe = 2 level of the
excited state, atoms have a finite probability of decaying to the Fg = 2
level and coming back to the cooling cycle.

Though the Doppler cooling limit is a low temperature, much lower temper-
atures can be reached with the technique of polarization gradient cooling
discussed in the next section.

2. Polarization gradient cooling

Polarization gradient cooling is also called sub-Doppler cooling because it al-
lows one to reach temperatures below the Doppler cooling limit, or Sisyphus
cooling for reasons that will become clear soon. The cooling mechanism re-
quires the presence of magnetic sublevel structure in the transition used
for cooling, coupled with varying light shifts for the different sublevels in
the presence of different polarizations of light. Therefore it is most easily
understood for a Fg = 1/2 → Fe = 3/2 transition in one dimension. The
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laser configuration consists of two counter-propagating beams with orthog-
onal linear polarizations—the so-called lin ⊥ lin configuration. If we take
the direction of propagation to be along the z axis, the two polarizations
to be along the x and y directions with a phase difference of −π/2 at z = 0,
and an amplitude of E◦ for each beam, then the total electric field is

�E(�r, t) = E◦
[
ei(kz−ωt)x̂− iei(−kz−ωt)ŷ

]
+ c.c.

=
√
2E◦

[
cos(kz)

x̂− iŷ√
2

+ i sin(kz)
x̂+ iŷ√

2

]
e−iωt + c.c.

Figure 11.2: Energy level scheme for understanding polarization gradient
cooling. (a) Sublevel structure and Clebsch-Gordan coefficients for a Fg =
1/2 → Fe = 3/2 transition. (b) Light shifts and steady-state populations
(filled circles) for the sublevels of the Fg = 1/2 ground state, in the
presence of red detuning and lin ⊥ lin configuration which causes the
polarization to vary with a period of λ/2. The most populated sublevel
is always the one with the largest negative shift.

Thus the polarization cycles from linear to circular. This is shown in Fig.
11.2—starting with linear at z = 0, it becomes σ+ at λ/8, then orthogonal
linear at λ/4, then σ− at 3λ/8, and back to linear at λ/2 from where it
starts repeating. This polarization gradient causes different light shifts for
the two sublevels of the Fg = 1/2 ground state considered for the cooling
because the magnitude of the shift depends on the strength of the transi-
tion, which in turn depends on the polarization of light and the relevant
Clebsch-Gordan coefficient. The C-G coefficients for the different transi-
tions are shown in Fig. 11.2(a). For this case, a red detuned beam with σ+

polarization down shifts the mg = +1/2 sublevel three times more than the
mg = −1/2 sublevel, while σ− polarization down shifts the mg = −1/2 sub-
level more than the mg = +1/2 sublevel by the same amount. In between
where the light is linearly polarized, both sublevels have the same light
shift and the energies cross each other. The modulated light shifts of the
two sublevels, and their steady-state populations are shown in Fig. 11.2(b).
The population is maximum for the sublevel with the largest negative shift.
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The other thing to note in understanding this cooling mechanism is the
process of optical pumping, which drives the population toward its steady-
state value. If the optical pumping rate is fast compared with the time it
takes for the atom to travel a distance equal to λ/2, then the population
is nearly the equilibrium population, so that the atom finds itself pumped
to the bottom of the potential hill as soon as it reaches the top—this is
reminiscent of the Greek mythological character Sisyphus who is always
pushing a stone uphill because he finds himself back at the bottom as soon
as he reaches the top. This is shown in Fig. 11.3 and the reason why
polarization gradient cooling is also called Sisyphus cooling.

Figure 11.3: Polarization gradient cooling for the energy level structure
shown in Fig. 11.2. The atom is always climbing a potential hill because
it gets optically pumped to the bottom as soon as it reaches the top.

We are now in a position to understand the cooling mechanism, by referring
to Fig. 11.3. Consider an atom moving with a velocity v to the right starting
at z = λ/8 starting in the mg = −1/2 sublevel. It climbs the potential hill
toward z = 3λ/8 by converting a part of its kinetic energy into potential
energy. At z = 3λ/8, it gets optically pumped to the mg = +1/2 sublevel.
This process takes away energy from the atom because the energy of the
absorbed photon is lower than that of the spontaneously emitted anti-Stokes
Raman photon. From z = 3λ/8 to 5λ/8 it starts climbing the hill again,
but this time in the other sublevel. This process continues till the atom’s
energy becomes too small to climb the next hill. Thus the minimum atomic
kinetic energy is of the order of the modulation depth U◦ in the light shift,
so the limit of polarization gradient cooling is kBTmin ∼ U◦, which is one
to two orders of magnitude smaller than the Doppler cooling limit. Since
the light shift varies as Γ/|δ|, lower temperatures are reached when the
(red) detuning is larger. The typical detuning used in polarization gradient
cooling is two to three times Γ. In addition, the above analysis shows that
it requires careful nulling of B fields so that the sublevels are degenerate in
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the absence of light.

Finally, we note that the simplifying assumption of a Fg = 1/2 → Fe = 3/2
transition is not so limiting—it works for other values of Fg as long as there
are multiple magnetic sublevels.

3. Magneto-optic trap — MOT

So far we have seen how to use laser beams to localize the atoms in momen-
tum space, i.e. cool them by reducing their velocity spread. But in order to
localize them in real space (or trap them), we need to provide a restoring
force that pushes the atoms toward a particular point in space. This is
most easily done by adding a quadrupole magnetic field to the 3D molasses
configuration. The magnetic field, produced using a pair of anti-Helmholtz
coils, has a linear variation along the three axes, with the field gradient
along the z axis equal to −2 times that along the x and y axes so that it
satisfies ∇ · �B = 0. The laser beams are chosen to have opposite circular
polarizations along each of the three orthogonal directions. This scheme,
shown in Fig. 11.4(a), is called a magneto-optic trap (MOT), and is the
workhorse of all laser cooling experiments.

Figure 11.4: The magneto-optic trap (MOT). (a) The 3D MOT requires
the addition of a quadrupole B field (produced using a pair of anti-
Helmholtz coils) to a molasses configuration with opposite circular po-
larizations along the three axes. (b) Principle of operation of the MOT
using the z axis as an example. The Zeeman shifts of the m sublevels in
the linear B field, and selection rules for σ polarization, mean that the
� beam is closer to resonance on the left hand side, while the r beam is
closer to resonance on the right hand side.
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The principle of the MOT can be understood by considering what happens
along the z axis, as shown in the Fig. 11.4(b). For simplicity we consider
an Fg = 0 → Fe = 1 transition. The linearly varying B field means that
the magnetic sublevels have linearly varying Zeeman shifts, and intersect at
the origin where the field is 0. The laser beam on the left is chosen to have
σ+ polarization and drives transitions with the selection rule Δm = +1,
while the laser beam on the right has σ− polarization and drives transitions
with the selection rule Δm = −1. If the laser frequency is detuned below
resonance, then for an atom on the right hand side, the r beam is closer
to resonance compared to the � beam. The imbalance in scattering rates
results in a net force that pushes the atom toward the origin. The opposite
happens for an atom on the left hand side—the � beam is closer to resonance
compared to the r beam and again pushes the atom toward the origin.
Thus we have created a restoring force pointing toward the origin. Note
that the laser cooling (both Doppler and polarization gradient) described
earlier still works because the laser beams are red detuned. Furthermore,
the assumption of an Fg = 0 → Fe = 1 transition is not so restrictive, and
the scheme works for most values of angular momenta used in experiments.

Experimental details

Specific numbers are for the 87Rb D2 line (5S1/2 → 5P3/2 transition) at
780 nm.

(i) The experiments are done inside an ultra-high vacuum (UHV) cham-
ber maintained at a pressure below 10−8 torr using an ion pump. In
fact, the lower the pressure in the chamber the longer the lifetime in
the MOT, because collisions between trapped atoms and background
atoms are reduced.

(ii) The three pairs of cooling laser beams along the three axes should be
sufficiently big so that the overlap region at the trap center is about
2 cm in size.

(iii) The intensity in each beam should be a few times the saturation in-
tensity, which for 87Rb atoms is 1.6 mW/cm2.

(iv) The detuning of the beams should be about −2 Γ so that polarization
gradient cooling can work. The mechanism for polarization gradient
cooling in σ+σ− configuration is different from the lin ⊥ lin case
discussed earlier, and is covered in detail in a paper by Dalibard and
Cohen-Tannoudji.∗ But the important point from an experimental
point of view is that it works.

∗J. Dalibard and C. Cohen-Tannoudji, “Laser cooling below the Doppler limit by po-
larization gradients: simple theoretical models,” J. Opt. Soc. Am. B 6, 2023–2045
(1989).
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(v) To get an estimate of the required gradient of the quadrupole B field,
we say that it should be such that the Zeeman shift at a distance of
1 cm (the radius of the laser beams) is equal to the detuning. For
87Rb atoms cooled on the |Fg = 2,mg = +2〉 → |Fe = 3,me = +3〉
hyperfine transition, the Zeeman shift is 1.4 MHz/G. Therefore for a
detuning of −12 MHz (−2Γ), the required field gradient is 8.6 G/cm.
Note that the operation of the MOT is not very sensitive to the field
gradient, and this calculation is just to get a rough estimate.

(vi) The fluorescence from the trapped atoms is imaged using a CCD cam-
era. The number of atoms is estimated using a calibrated photodiode,
after taking into account the solid angle subtended by the collection
optics at the location of the trapped atoms and the scattering rate.

(vii) The repumping beam has to be mixed with the cooling beam to pre-
vent atoms from being lost due to optical pumping.

The capture velocity vc of the MOT is defined as the velocity at which
the Doppler shift takes the atom out of resonance by one linewidth, which
implies

vc = (|δ|+ Γ)
λ

2π

It is called capture velocity because the atomic velocity has to be of this
order so that it can be cooled and captured. For Rb atoms trapped in a
MOT with a detuning of −2 Γ, vc is 14 m/s. Since this velocity is small
compared to the average velocity in hot vapor, the number of atoms with
velocity less than this value is quite small. This necessitates the use of two
techniques to load the MOT.

(i) Through the low-velocity tail of hot vapor produced using what is
called a getter source. Such a MOT is called a vapor cell MOT.
Its main advantage is easy loading, but it comes at the cost of high
pressure in the MOT region, and consequent low lifetime. If a long
lifetime is required, then the atoms either have to be pushed to a
higher vacuum region using laser beams or physically transported by
moving the B field.

(ii) By using a Zeeman slower to reduce the velocity of atoms coming out
of an oven, which will be discussed in the next part. The advantage
of a MOT loaded from a Zeeman-slowed beam is that the MOT is in
a high vacuum region.

In Fig. 11.5 we show an image of 87Rb atoms trapped in a vapor cell MOT.
The vacuum chamber had a pressure of around 10−9 torr. The atoms
were cooled on the Fg = 2 → Fe = 3 transition with a detuning of −12
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MHz. The three pairs of cooling beams were formed by retro-reflecting
incoming circularly polarized beams through quarter wave plates (so that
the return beam had opposite circular polarization). Each incoming beam
had a power of around 4 mW and a Gaussian profile with 1/e2 diameter of
18 mm. This implies that the maximum intensity at beam center was 3.1
mW/cm2 compared to the saturation intensity of 1.6 mW/cm2. Each beam
was mixed with a repumping beam resonant with the Fg = 1 → Fe = 2
transition. The repumping beam had the same size but with a maximum
intensity of 2 mW/cm2. The field gradient was 10 G/cm. The resulting
cloud shown in the image has about 5 × 107 atoms at a temperature of
∼ 100 μK. The cloud size is roughly 3 mm.

Figure 11.5: CCD image of 87Rb held in a MOT. The cloud has approxi-
mately 5× 107 atoms at a temperature of 100 μK, and a size of 3 mm.
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4. Zeeman slower

The probability density function (pdf) of the velocity distribution of atoms
coming out of an oven at temperature T is

f(v) = 2

(
m

2kBT

)2

v3 exp

(
− mv2

2kBT

)
where m is the mass of the atom. The cumulative probability defined as

P (v) =

∫ v

0

f(v′) dv′

gives the total fraction of atoms with velocity up to v.

Figure 11.6: Probability density function f and integrated probability P
as a function of velocity for 87Rb coming out of an oven at 100◦C.

Plots of f(v) and P (v) for 87Rb atoms coming out of an oven at 100◦C are
shown in Fig. 11.6. The curve for the cumulative probability shows that
a negligible fraction of atoms have velocity less than 14 m/s, which is the
capture velocity of a Rb MOT with −2Γ detuning. An easy way to have
a sizable fraction of atoms with velocity below this value is to slow them
down using the spontaneous force from a counter-propagating laser beam.
But this has the problem that the change in Doppler shift as the velocity
decreases means that the atoms soon go out of resonance. For example, if
we consider an atom to be out of resonance if the Doppler shift exceeds
one linewidth, then for 87Rb atoms slowed on the D2 line, a reduction in
velocity by 4.7 m/s is enough to take them out of resonance. An elegant
way to compensate for this varying Doppler shift is to use the Zeeman shift
in a magnetic field, with the magnetic field profile chosen to match the
velocity at every point as the atoms slow down—such an arrangement is
called a Zeeman slower.

From Eq. (4.9) of Chapter 4, we see that the Zeeman shift for a |Fg,mg〉 →
|Fe,me〉 transition in a field of magnitude B◦ is

WB = (gFeme − gFgmg)μBB◦
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Thus the condition for the Doppler shift being compensated by the Zeeman
shift (taking the direction of slowing to be along the z axis) becomes

ω◦ +
WB

�

B(z)

B◦
= ω +

2πv(z)

λ◦

where ω is the frequency of the slowing laser. This gives

B(z) =
�B◦
WB

[
δ +

2πv(z)

λ◦

]
(11.2)

The atoms get decelerated because of the spontaneous force. Therefore the
acceleration can be written in a manner similar to Eq. (11.1) as

a =
Fspont

m
=

�k

m

Γ

2

I/Is

1 + I/Is + (2δ/Γ)
2

If we assume that the deceleration is constant throughout the slowing pro-
cess, then the velocity at a distance z for an atom with initial velocity vi
is

v(z) =
√
v2i − 2az

If the atoms are brought to rest after a distance L◦ then a = v2i /2L◦, so

v(z) = vi

√
1− z

L◦

Substituting in Eq. (11.2) we get

B(z) =
�B◦
WB

[
δ +

2πvi
λ◦

√
1− z

L◦

]
which shows that the required profile is parabolic.

Depending on the laser detuning, the following three kinds of slower designs
are possible.

(i) Decreasing field slower — This has a field maximum at the begin-
ning and zero at the end, with a laser detuning of zero. The main
disadvantage of this design is that the slowing beam is on resonance
with the trapped atoms, and can therefore disturb the MOT unac-
ceptably.

(ii) Increasing field slower — This has a zero at the beginning and
increases to a maximum at the end, with the laser detuning chosen so
that it compensates for the Doppler shift of the initial velocity. The
main disadvantage of this design is that the large field near the end
causes an unacceptably large fringing field at the location of the MOT.
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(iii) Spin-flip slower — This is a compromise between the above two
designs, and has non-zero fields at the beginning and the end (with
opposite signs) and goes to zero in between. Apart from overcoming
the disadvantages of the above two designs, the spin-flip design also
consumes less electrical power in the slowing coils. This is because the
field magnitude can be made half of that in the above designs while
keeping their difference (which determines vi) the same.

Actually, if the atoms are brought to complete rest, then they will not
make it to the MOT. Therefore, they are given a small final velocity vf by
truncating the slower at a length L that is smaller than L◦. In terms of
the initial and final velocities, the magnetic fields at the end points of the
slower from Eq. (11.2) are

Bi = B(0) =
�B◦
WB

[
δ +

2π

λ◦
vi

]

Bf = B(L) =
�B◦
WB

[
δ +

2π

λ◦
vf

]
The B field profile in terms of these two field values is

B(z) = Bf + (Bi −Bf )

√
1− z

L

It is important to note that all atoms with velocity up to vi are slowed by
the slower. If an atom starts with a smaller initial velocity, then it begins
slowing down from the point where the B field is right. In effect each
atom goes through every value of velocity below its starting value, and the
number of slowed atoms corresponds to the cumulative probability as the
slowing progresses.

The profile for slowing 87Rb atoms from 400 m/s to 10 m/s is shown in
Fig. 11.7. From the cumulative probability in Fig. 11.6 this corresponds to
capturing 67% of atoms coming out of the oven. The laser is detuned by
−200 MHz from the |Fg = 2,mg = 2〉 → |Fe = 3,me = 3〉 transition of the
D2 line, and has σ+ polarization. The solid line in the figure is the desired
profile. It is realized by wrapping welding cables around the outside of the
vacuum chamber in a tapered manner—the calculated field from one such
realization is shown using open circles, and closely matches the required
profile. The measured field after wrapping the cables is almost identical to
the calculation.
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Figure 11.7: Spin-flip Zeeman slower for slowing 87Rb atoms from 400
m/s to 10 m/s with a laser detuned by −200 MHz from the Fg = 2 →
Fe = 3 transition of the D2 line. Solid line is the required profile, while
open circles represent the calculated field from a physical realization with
welding cables wrapped on the outside of the vacuum chamber.

5. Atomic fountain

Many precision experiments (e.g. atomic clocks) are done with cold atoms
launched vertically in a fountain from a MOT. The most common method
of launching atoms while keeping them cold is to use the idea of moving
molasses. We have already seen that a pair of counter-propagating laser
beams with identical detunings of −Γ/2 will result in atoms with 〈v〉 = 0
cooled to the Doppler limit. If we want atoms to be launched vertically
with a velocity of v◦, then the two detunings should be −Γ/2 in a frame
moving up at v◦. Thus the detunings in the laboratory frame are

δup = −Γ/2 + v◦/λ

δdown = −Γ/2− v◦/λ

showing that the two laser beams should have unequal detunings for launch-
ing.
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B. Stimulated force

Like the spontaneous force, this force also arises because of momentum
transfer from the laser to the atom, but the difference is that the emission
process is stimulated. The atom is driven coherently between the ground
and excited states by the laser. The incoherent nature of spontaneous
emission from |e〉 is ignored, which becomes an increasingly better approx-
imation as the detuning is increased. We thus see that it is a conservative
force and can be derived from a potential. The force is also called the dipole
force because it arises due to the induced dipole moment in the atom by the
light. Since the induced dipole moment is proportional to the amplitude
of the incident electric field E◦, the energy (or potential) is proportional to
E2
◦ or the light intensity. Thus it can result in a force if the intensity is

inhomogeneous—at the focus of a Gaussian beam for example.

To get a quantitative measure of the force, we go back to the energy shift
of an atomic state in the presence of an oscillating E field in the dressed
atom picture given in Eq. (3.28) of Chapter 3. We take the detuning to be
to be negative (red detuned) so that the atom is in a strong field seeking
state, and therefore feels a force toward the intensity maximum of the light.
For this case the light shift is

U =
�

2
(ω′

R − |δ|) = �

2

(√
Γ2

I

2Is
+ δ2 − |δ|

)

where we have related ω2
R to I and Is using Eq. (6.31) of Chapter 6. The

above is also called the “dressed state potential” because the dipole force
can be derived by differentiating it.

In the limit of large detuning |δ|/Γ 	 1, the potential can be approximated
as

U ≈ �Γ2

8δ

I

Is

which shows explicitly that the force requires an intensity gradient.

1. Dipole trap

A simple way to create an intensity gradient is by focusing a Gaussian beam.
Atoms (in the strong field seeking state) are then trapped both in the trans-
verse direction (because of the Gaussian profile of the beam), and in the
longitudinal direction (because the focusing creates an intensity maximum
at the beam waist)—such a dipole trap is called a far off resonance trap
(FORT). But the trap stiffness is very different in the two directions—in
the transverse direction the size is determined by the waist radius w◦ which
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is of order microns for a tightly focused beam; while in the longitudinal di-
rection the size is determined by the Rayleigh range πw2

◦/λ which is 10 to
100 times larger.

This difference should be clear from Fig. 11.8(a), where we show the poten-
tial experienced by 87Rb atoms at the focus of an Nd-YAG laser beam at
1064 nm. Using a typical value of 3 W for the beam power and that it is
focused to a waist radius of 5 μm, we get the maximum intensity at beam
center as 7.64 × 106 W/cm2 and the corresponding Rayleigh range as 74
μm. The size of the potential in the two directions in the figure shows that
the trap is very weak in the longitudinal direction. This is solved by using
a crossed dipole trap so that atoms are trapped tightly in all directions at
the intersection of the two beams, as shown in Fig. 11.8(b). The depth of
the potential from Fig. 11.8(a) is 9.7 mK, which shows that atoms have to
be precooled using laser cooling to be successfully trapped in a dipole trap.

Figure 11.8: (a) Dipole potential in the transverse and longitudinal di-
rections for trapping 87Rb atoms with an Nd-YAG laser beam at 1064
nm, using 3 W power focused to a spot size of w◦ = 5 μm. The trap is
much weaker in the longitudinal direction. (b) Crossed dipole trap used
to provide tight confinement in all directions.
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C. Magnetic trapping and evaporative cooling

Magnetic trapping of neutral atoms uses the fact that atoms have a mag-
netic moment �μ and that it interacts with an external B field through a
−�μ · �B term in the Hamiltonian. Atoms with spin oriented along the B
field (weak field seekers) can be trapped if the field is inhomogeneous and
has a minimum (in magnitude) at some point. Atoms with anti-parallel
spin (strong field seekers) are not trapped. If the atom has F = 1/2, then
there are only two spin states: the m = +1/2 state is trapped while the
m = −1/2 state is untrapped.

The simplest way to create a field minimum is to have a quadrupole B
field produced using a pair of anti-Helmholtz coils—called a quadrupole
trap. Spin-polarized atoms are then trapped near the center. But the field
minimum is actually equal to zero. In fact this zero field point is the major
drawback of the quadrupole trap because atoms can be lost from here due
to the fact that there is no quantization axis and the trapped and untrapped
states are degenerate, raising the possibility of non-adiabatic spin flip as the
atoms pass this point—such losses are called Majorana spin-flip losses. The
losses become more and more significant as the atoms get colder because
they spend more time near this point. One would think that this problem
can be solved by adding a small constant field to the configuration, but a
moment’s introspection shows that it only shifts the zero point to a new
location.

The other configuration used for magnetic trapping, which has a non-zero
field minimum and thus eliminates the problem of spin-flip losses, is the
Ioffe–Pritchard trap. The trap is shown schematically in Fig. 11.9. It
consists of a pair of circular coils (carrying current in the same direction),
and four current carrying rods lying symmetrically on a circle with alter-
nating current directions as shown in Fig. 11.9(a). Along the z axis the
field due to the four rods is zero, therefore only the coils contribute. Then
the field near the center can be expanded in a series as

| �B| = Bz(z) =
μIR2

(R2 +A2)3/2

[
1 + 3z2

(4A2 −R2)

2(A2 +R2)2
+ . . .

]
where I is the current through the coils, R is their radius, and 2A is their
separation.

As a specific example, we consider the case where I = 100 A, R = 1.5 cm,
and A = 2.25 cm. In these mixed units where the current is measured in
amperes and lengths in centimeters, the constant μ is 4π/10. The calculated
field along the z direction for this configuration is shown in Fig. 11.9(b)—it
shows that the field has a minimum value of 14.3 G. The field profile in the
radial direction (not shown) has a similar shape with the same minimum.
But the price one has to pay for this non-zero minimum is that the field
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has a parabolic shape and not linear as in a quadrupole trap. This means
that in order to get the same tightness of confinement in the two cases, the
magnitude of the field for the Ioffe-Pritchard trap has to be much larger.

Figure 11.9: Ioffe-Pritchard trap. (a) Configuration consisting of two
circular coils carrying current in the same direction, and four current
carrying rods lying symmetrically on a circle with alternate current direc-
tions. (b) Field along the z direction for the case of current 100 A, coil
radius 1.5 cm, coil separation 4.5 cm, and rods on a circle of radius 1 cm.
The field has a non-zero minimum of 14.3 G.

As with dipole traps, atoms have to be pre-cooled before being loaded into
a magnetic trap because the trap depths are less than 1 K. But once loaded,
they can be cooled further using the technique of evaporative cooling.
This is a technique that works by removing the hottest atoms from the trap
and allowing the remaining atoms to thermalize to a lower temperature. Re-
thermalization of the remaining atoms requires that the atoms be trapped
tightly so that the collision rate is high compared to the evaporation rate.

We will see more about magnetic trapping and evaporative cooling in the
next section on Bose–Einstein condensation.
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D. Bose–Einstein condensation

This section is a bit historical since the intention is to narrate the evolution
of Bose–Einstein condensation (BEC).

The story of BEC begins in 1924 when the young Indian physicist S. N. Bose
gave a new derivation of the Planck radiation law. He was able to derive the
law by reducing the problem to one of counting or statistics: how to assign
indistinguishable particles (photons) to cells of energy hν while keeping the
total energy constant. Einstein realized the importance of the derivation for
developing a quantum theory of statistical mechanics. He argued that if the
photon gas obeyed the statistics of Bose, so should material particles in an
ideal gas. Carrying this analogy further, he showed that the quantum gas
would undergo a phase transition at a sufficiently low temperature when
a large fraction of the atoms would condense into the lowest energy state.
This is a phase transition in the sense of a sudden change in the state of the
system, just like steam (gaseous state) changes abruptly to water (liquid
state) when cooled below 100◦C. But it is a strange state because it does
not depend on the interactions of the particles in the system, only on the
fact that they obey a kind of quantum statistics.

In modern physics, the phenomenon is understood to arise from the fact
that particles obeying Bose–Einstein statistics (called bosons) “prefer” to
be in the same state. This is unlike particles that obey Fermi–Dirac statis-
tics (fermions), and therefore the Pauli exclusion principle, which states
that no two of them can be in the same state. With this property of bosons
in mind, imagine a gas of bosons at some finite temperature. The particles
distribute the total energy amongst themselves and occupy different energy
states. As the temperature is lowered, the desire of the particles to be in the
same state starts to dominate, until a point is reached when a large fraction
of the particles occupies the lowest energy state. If any particle from this
state gains some energy and leaves the group, the other particles quickly
pull it back to maintain their number. This is a Bose–Einstein condensate,
with the condensed particles behaving like a single quantum entity.

The point at which “the desire for the particles to be in the same state
starts to dominate” can be made more precise by considering the quantum
or wave nature of the particles in greater detail. The basic idea is shown
in Fig. 11.10. From the de Broglie relation, each particle has a wavelength
λdB given by h/mv, where m is the mass and v is the velocity. At high
temperatures, the average thermal velocity of the particles is high and they
behave like billiard balls. As the temperature is lowered, the mean velocity
decreases and the de Broglie wavelength increases, and the particles start
to behave like extended wavepackets. BEC occurs when λdB becomes com-
parable to the average interparticle separation so that the wavefunctions of
the particles overlap. The average interparticle separation for a gas with
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number density n is n−1/3, and from kinetic theory the mean de Broglie
wavelength of gas particles at a temperature T is h/(2πmkT )1/2. For the
wavefunctions to overlap, this product should be of order 1. A more rig-
orous analysis shows that BEC occurs when the dimensionless phase-space
density nλ3

dB exceeds 2.612.

Figure 11.10: Bose–Einstein condensation. As the temperature is lowered,
the particles go from behaving as billiard balls, to behaving as extended
wavepackets, to having overlapping wavefunctions when BEC occurs, to
having a single wavefunction at T = 0.

In the early days, it was believed that BEC was only a theoretical prediction
and was not applicable to real gases. However, the observation of superflu-
idity in liquid He in 1938 made people realize that this was a manifestation
of BEC, even though it occurred not in an ideal gas but in a liquid with
fairly strong interactions. BEC in a non-interacting gas was now considered
a real possibility. The first serious experimental quest started in the early
1980s using spin-polarized atomic hydrogen. There were two features of
hydrogen that were attractive: it was a model system in which calculations
could be made from first principles, and it remained a gas down to absolute
zero temperature without forming a liquid or solid. Spin-polarized H could
also be trapped in a quadrupole magnetic trap. Using a dilution refriger-
ator, the gas was cooled to about 1 K and then loaded into the magnetic
trap.
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One of the major developments to come out of this effort was the proposal
in 1986 by Harald Hess, then a post-doc with Dan Kleppner at MIT, to
use evaporative cooling to lower the temperature and reach BEC. The idea
in evaporative cooling, as mentioned earlier, is to selectively remove the
hottest atoms from the trap, and then allow the remaining atoms to ther-
malize. Since the remaining atoms have lower energy, they thermalize to a
lower temperature. This is similar to cooling coffee in a cup: the hottest
particles near the top are blown to take away the heat, while the remaining
particles get colder. The MIT group of Kleppner and Greytak demon-
strated evaporative cooling of spin-polarized H by lowering the height of
the magnetic trap below the kinetic energy of the hottest atoms. By 1992,
they had come within a tantalizing factor of 3 of observing BEC but were
stopped short due to technical problems.

Meanwhile, a parallel effort in observing BEC using alkali atoms was get-
ting underway. The main impetus for this was to see if the tremendous
developments that occurred in the late 1980s in using lasers to cool atomic
clouds could be used to achieve BEC. Alkali atoms could be maintained in
a gaseous state if the density was low, typically less than 1014 atoms/cc.
But this meant that BEC would occur only at temperatures below 1 μK.
As we have seen, laser cooling, particularly polarization gradient cooling,
had indeed achieved temperatures in the range of a few μK, with a corre-
sponding increase in phase-space density of about 15 orders of magnitude.
However, the lowest temperature attained experimentally was limited by
heating due to the presence of scattered photons in the cloud. One advance
to this problem came from the MIT group of Dave Pritchard. His then
post-doc, Wolfgang Ketterle, proposed using a special magneto-optic trap
in which the repumping laser was blocked near the center. This meant that
the coldest atoms got “shelved” in the other hyperfine state and became
dark—they called it the dark spot MOT. Since the shelved atoms do not
see the light, they do not get heated out of the trap. This helped improve
the density by another order of magnitude, but BEC was still a factor of
million away.

Pritchard’s group at MIT also demonstrated magnetic trapping of sodium
at around the same time. Pritchard and his student Kris Helmerson pro-
posed a new technique for evaporative cooling in such a trap: RF-induced
evaporation. Instead of lowering the magnetic field to cause the hottest
atoms to escape, as was done in the spin-polarized hydrogen experiments,
they proposed using an RF field tuned to flip the spin of the hottest atoms,
and hence drive them into the untrapped state. The beauty of this tech-
nique is that the RF frequency determines which atoms get flipped, while
the trapping fields remain unchanged. Pritchard’s group was however un-
able to demonstrate evaporative cooling in their magnetic trap because the
density was too low.
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Laser cooling and evaporative cooling each had their limitations because
they required different regimes. Laser cooling works best at low densities,
while evaporative cooling works at high densities when collisions enable
rapid rethermalization. Therefore, in the early 1990s, a few groups started
using a hybrid approach to achieve BEC, i.e. first cool atoms to the mi-
crokelvin range using laser cooling, and then load them into a magnetic
trap for evaporative cooling. By the year 1994, two groups were leading
the race to obtain BEC: the Colorado group of Cornell and Wieman, and
the MIT group of Ketterle. Both groups had demonstrated RF-induced
evaporative cooling in a magnetic trap, but found that there was a new
limitation, namely the zero field point at the bottom of the quadrupole
trap from which atoms leaked out.

Ketterle’s solution to plug the hole was to use a tightly focused Ar-ion laser
beam at the trap center. The dipole force from the laser beam kept the
atoms out of this region, and, since the laser frequency was very far from
the resonance frequency of the sodium atoms used in the experiment, it
did not cause any absorption or heating. The technique proved to be an
immediate success and gave Ketterle’s team an increase of about 3 orders
of magnitude in phase-space density. But again technical problems limited
the final observation of BEC.

Cornell had a different solution to the leaky trap problem: the time-orbiting
potential (TOP) trap. His idea can be understood in the following way. If
you add a constant external field to the quadrupole trap configuration, the
hole does not disappear, it just moves to a new location depending on the
strength and direction of the external field. Atoms will eventually find this
new hole and leak out of it. However, Cornell’s idea was that if you move
the location of the hole faster than the average time taken for atoms to
find it, the atoms will be constantly chasing the hole and never find it! A
smooth way to achieve this is to add a rotating field that moves the hole
in a circle. The time-averaged potential is then a smooth pseudo-potential
well with a non-zero minimum.∗

Plugging the leaky trap proved to be the final hurdle in achieving BEC. In
July 1995, Cornell and Wieman announced that they had observed BEC
in a gas of 87Rb atoms. The transition temperature was a chilling 170 nK,
making it the coldest point in the universe! The researchers had imaged the
cloud by first releasing the trap and allowing the cloud to expand, and then
illuminating it with a pulse of resonant light. The light absorbed by the
cloud cast a shadow on a CCD camera. The “darkness” of the shadow gave
an estimate of the number of atoms at any point in the image. Since the
atoms expanded ballistically from nearly zero size, the final spatial location
in the image was proportional to the initial velocity, i.e. the image was a map

∗This pseudo-potential is similar to the one in a Paul trap for charged particles, which
we will see later.
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of the velocity distribution in the cloud. Looking at cuts through the images
to get the velocity distribution, they found that the appearance of the
condensate was marked by the atoms having a thermal velocity distribution
above the transition temperature to having a bimodal distribution with
a large peak at the center below the transition temperature. Calculated
distributions of what they obtained is shown in Fig. 11.11, the experimental
data matched this prediction.

Figure 11.11: Velocity distribution of 87Rb atoms near the Bose–Einstein
condensation transition. (a) Above the transition temperature (170 nK)
atoms have a thermal distribution. (b) Below the transition temperature,
the distribution is bimodal with 25% of atoms in the narrow peak near
the center corresponding to the condensed phase.

There was no doubt that the central peak corresponded to atoms in the
ground state of the trap because it was asymmetric, exactly as predicted
by quantum mechanics due to the fact that the trap strength was not
the same in the two directions. By contrast, the thermal distribution was
always symmetric, showing that the atoms in the central peak were non-
thermal. Furthermore, as the temperature was lowered below the transition
temperature, the density of atoms in the central peak increased abruptly,
indicating a phase transition. Thus there was no room for skepticism that
they had achieved BEC.

Soon after this, Ketterle’s group observed BEC in a cloud of 23Na atoms.
As against the few thousand condensate atoms in the Colorado experiment,
they had more than a million atoms in the condensate. This enabled them
to do many quantitative experiments on the fundamental properties of the
condensate. For example, they were able to show that when two conden-
sates were combined, they formed an interference pattern, indicating that
the atoms were all phase coherent. They were also able to extract a few
atoms from the condensate at a time to form a primitive version of a pulsed
atom laser, i.e. a beam of atoms that are in the same quantum state. They
could excite collective modes in the condensate and watch the atoms slosh
back and forth. These results matched the theoretical predictions very well.
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BEC in atomic gases has since been achieved in several laboratories around
the world, including from the lab of my first PhD student, Umakant Rapol,
at IISER Pune in India (images from their experiment shown in Fig. 11.12).

Figure 11.12: Velocity distribution of 87Rb atoms showing a phase tran-
sition from thermal cloud to BEC as the RF scalpel frequency is lowered.
Images taken by absorption imaging of near-resonant light falling on a
CCD camera. Image size 0.8 mm × 0.8 mm. Time of flight of ballistic
expansion after release from the trap is 21 ms.

Apart from Rb and Na, it has been observed in all the other alkali atoms.
The H group at MIT achieved it in 1998. Metastable He has also been
cooled to the BEC limit. A Rb BEC has also been obtained by evaporative
cooling in a crossed dipole trap, thus eliminating the need for strong mag-
netic fields and allowing atoms to be condensed independent of their spin
state. Such an all-optical trap has been used to condense the two-electron
atom Yb. The variety of systems and techniques to get BEC promises many
applications for condensates. The primary application, of course, is as a
fertile testing ground for our understanding of many-body physics, bringing
together the fields of atomic physics and condensed-matter physics. In pre-
cision measurements, the availability of a giant coherent atom should give
enormous increase in sensitivity. BECs could also impact the emerging field
of nanotechnology since the ability to manipulate atoms greatly increases
with their coherence.

In recognition of their pioneering work on BECs, Cornell, Wieman, and
Ketterle were awarded the 2001 Nobel Prize in physics.
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E. Optical tweezers

The optical tweezers is an invention by Art Ashkin and colleagues working
at AT&T Bell Labs. They were studying the manipulation of neutral atoms
in a dipole trap, when they realized that the same force could be used to
trap micron-sized particles. The trapping force is produced using a tightly
focused laser beam, usually realized by sending an IR laser beam through a
high numerical aperture (NA) microscope objective. The laser wavelength
λ is about 1 μm, while the size d of the trapped particle ranges from 1
to 10 μm, therefore a ray-optics picture (valid for d � λ) can be used to
understand the trapping force.

The basic idea is shown in the Fig. 11.13. The momentum change associ-
ated with refraction of rays produces a restoring force toward the intensity
maximum located at the beam waist, thus trapping the particle both in
the transverse and longitudinal directions. Instead of red detuning as re-
quired for trapping atoms, particles trapped in an optical tweezers trap
have to be transparent to the light with a refractive index greater than the
surrounding medium. As before, the trap stiffness is very different in the
two directions, but the weak nature in the longitudinal direction is not a
problem for most applications. In addition, the trapped particle does not
need to be separately cooled—the damping force required for the trap to
work is provided by having the particle immersed in a viscous medium. For
example, many experiments are done with polystyrene beads immersed in
water, where the water provides the viscous damping.
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Figure 11.13: Ray-optics picture for trapping of a dielectric sphere in
an optical tweezers trap at the intensity maximum. Left hand side shows
trapping in the transverse direction due to the recoil momentum from the
refracted rays being toward the beam center for a particle displaced from
it, because the two rays have different intensities. Right hand side shows
trapping in the longitudinal direction because the recoil momentum from
the refracted rays is toward the focus for a particle displaced from it.
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A typical experimental set up is shown in Fig. 11.14(a). The high NA
objective is usually a 100×, 1.4 NA, oil-immersion objective. The laser
beam from an Nd-YAG laser at 1064 nm is fed into an inverted micro-
scope, where the direction of gravity helps in bringing the particles closer
to the trap. The trapped particle is visualized using a video camera, while
quantitative measurements of its position are measured using a quadrant
photodiode (QPD) with a typical sensitivity of 25 mV/μm. If a polystyrene
bead immersed in water is used as the trapped particle, then it can be at-
tached to other things such as DNA strands which can then be manipulated.
Alternately, single cells or organelles within cells can be directly manipu-
lated. As an example, a single red blood cell (RBC), which has a size of 5 to
8 μm, is shown before and after trapping in Fig. 11.14(b). Optical tweezers
can then be used as a sensitive probe to study the changes in the RBC due
to infection, by the malarial parasite for instance. This is just one of the
myriad applications of optical tweezers in biology and medicine, which take
advantage of the fact that the technique is non-invasive and ultra-sensitive.

Figure 11.14: Optical tweezers trap. (a) Typical experimental setup. (b)
Single red blood cell (RBC) upon being trapped reorients itself because
of its flat shape.
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Calibrating the trap

Many applications of optical tweezers require a precise knowledge of its
strength. Assuming that the trap is harmonic, its strength is characterized
by a spring constant k. This can be measured in the following ways.

(i) Escape force method

In this method one measures the minimum force required to free a particle
from the trap using the viscous drag of the medium. The force on the
particle is applied by moving the medium with respect to the trap, either
by moving the sample stage while keeping the trapping laser stationary, or
by moving the laser with a stationary stage. The velocity of the particle,
measured using the video camera in the setup, is increased continuously
until the particle escapes. For a spherical particle the viscous force is given
by

Fviscous = 6πηav

where η is the viscosity of the medium, a is the diameter of the particle,
and v is the velocity. Thus by knowing the escape velocity one can estimate
the trapping force. This is a somewhat approximate method and gives the
trap strength with about 10% accuracy, because the particle escapes from
the edge—the optical properties near the edge are often not the same as
that at the center.

(ii) Drag force method

This method relies on applying a known force to the trapped particle and
measuring its displacement from the trap center. If the applied force is F
and displacement of the particle is d then the trap stiffness is just k = F/d.
The force is applied by moving the medium with a constant velocity and
using F = 6πηav, while its position is recorded using the QPD shown in
the setup. To ensure that one remains in the linear regime of force versus
displacement, the particle should not reach the edge of the trap. In addition,
the viscocity is different near the walls of the chamber; hence it is better
to stay away from them.

(iii) Equipartition method

An alternate method, which does not require knowledge of the viscosity
or shape/size of the particle, is to measure the thermal fluctuations in
the position of the trapped particle. For a particle bound in a harmonic
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potential and at a temperature T , the equipartition theorem tells us that

1

2
k 〈x〉2 =

1

2
kBT

where x is the particle’s position as measured by the QPD. Thus a statistical
analysis of the QPD data gives us k. Although the method does not use η
or a, it requires the QPD to be well calibrated in terms of relating its data
points to position values, and the electronics to have sufficient bandwidth so
that fluctuations at high frequencies can be measured. Furthermore, other
sources of noise (such as from the electronics) add to the fluctuation in
the data and hence influence the estimate of k, so they must be minimized.
Since the method relies on the potential being harmonic, one has to ensure
that the trapped particle remains near the center.

(iv) Power spectrum method

This is another statistical method using the QPD data, but has the advan-
tage that the QPD does not have to be accurately calibrated. It relies on
measuring the power spectrum of position fluctuations in the trap. The
equation of motion of a particle within a harmonic potential and inside a
viscous medium (neglecting the inertial term because the particle is in an
overdamped medium) is given by

γ ẋ(t) + k x(t) = F (t)

where F (t) is the Langevin force, and γ is Stoke’s viscous drag coefficient
which is 3πaη for a spherical particle of diameter a.

From the above equation one sees that the Fourier transform X(f) of x(t),
and the corresponding power spectrum P (f), for a particle at temperature
T obey

P (f) = 〈X(f)X∗(f)〉 = kBT

π2γ

(
1

f2
c + f2

)
This shows that the power spectrum has a Lorentzian lineshape, with a
corner frequency fc. The corner frequency is related to the trap stiffness as

k = 2πγfc

Thus one can calculate the trap stiffness by measuring fc and knowing γ.
fc can be determined by recording the position fluctuations with the QPD,
finding the power spectrum of the data, and fitting the above Lorentzian
lineshape to the spectrum. The advantage of this method is that one does
not have to calibrate the QPD since any arbitrary scaling of the data will
give the same corner frequency. In addition, if the tweezer is slightly mis-
aligned, then the power spectrum will not have a Lorentzian lineshape—so
this technique can be used to ensure that the trap is aligned properly.
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(v) Step response method

In this method one measures the trap stiffness by looking at the response of
the trapped particle to a sudden (step) displacement of the trap. If the size
of the step is x◦, then the response of the particle in a harmonic potential
is an exponential build-up from 0 to x◦ given by

x(t) = x◦

[
1− exp

(
−kt

γ

)]
Here also one does not require the QPD to be calibrated since any scaling
of x will not affect the determination of k. As before one has to ensure that
the particle remains in the harmonic regime near the trap center.

In all the above methods except for the equipartition method, a knowl-
edge of the viscosity of the medium is needed. Thus there should be an
independent method to determine η. For a polystyrene bead in water at
room temperature, η = 1002 μNs/m2. The typical trap strength for trap-
ping such a particle with a 100× objective is k ≈ 8 μN/m with 25 mW of
laser power incident on the sample plane.
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F. Ion trapping

In this section we will discuss the two kinds of ion traps—Penning and
Paul. The Penning trap was invented by Hans Dehmelt and used to make
a precision measurement of the electron g factor using a single trapped
electron. The Paul trap was invented by Wolfgang Paul and used for many
spectroscopic measurements on trapped ions. It is generally easier to trap
ions compared to neutral atoms because their charged nature means that
they interact strongly with external fields.

1. Penning trap

The Penning trap uses static electric and magnetic fields to trap charged
particles in all three dimensions. A strong uniform magnetic field along the
z axis confines the particle radially, while a weak quadrupole electric field
provides a linear restoring force in the axial direction. The equipotential
surfaces for a quadrupole electric field are hyperbolae of rotation. The trap
is formed with copper electrodes that are machined to have this shape, as
seen from the cross-sectional view in Fig. 11.15. The top and bottom elec-
trodes are called endcaps, while the central one is called the ring electrode.
The holes in the endcaps allow ions to be injected into the trap. The trap
is kept in a vacuum chamber, which is in turn kept in a liquid He bath so
that the cryogenically pumped vacuum gives a lifetime of several days for
the trapped ions.

Figure 11.15: Cross-sectional view of a Penning trap. The electric field
lines for the quadrupole field are as shown.

If we assume that the electrodes are infinite in size so that the electric field
is perfect, then the electrostatic potential (in cylindrical coordinates) inside
the trap is

φ(z, ρ) =
z2 − 1

2ρ
2

2d2
VT
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where VT is the applied voltage between the ring and endcaps, z is the axial
position, ρ is the radial position, and d is the characteristic size of the trap
given by

d2 ≡ z2◦
2

+
ρ2◦
4

with z◦ and ρ◦ as defined in the figure.

For simplicity, we consider that a single ion of mass m and charge e is
trapped in the trap. Then its equation of motion is

m
d2�r

dt2
= e �E(�r) +

e

c
�v × �B(�r)

In an ideal trap, the motion decomposes into three normal modes. In the
axial direction the linear electric field gives rise to harmonic motion (called
the axial mode) at a frequency defined by

ω2
z =

eVT

md2

The two modes in the radial plane are the trap cyclotron mode—at a fre-
quency ω′

c corresponding to the normal cyclotron oscillation around the
magnetic field lines, but slightly modified due to the electric field in the
trap—and the magnetron mode—a slow drift at ωm due to the �E × �B field
away from trap center. The eigenfrequencies can be derived from the radial
equation of motion in the trap

d2�ρ

dt2
− ωc

d�ρ

dt
× ẑ − 1

2
ω2
z�ρ = 0

where ωc = eB/mc is the frequency of free-space cyclotron motion around
the B field.

We guess solutions of the form Re{ρ◦eiωt} and plug it into the above equa-
tion to obtain the characteristic equation

ω2 − ωcω +
1

2
ω2
z = 0

This yields the two solutions

ω′
c =

1

2

(
ωc +

√
ω2
c − 2ω2

z

)
ωm =

1

2

(
ωc −

√
ω2
c − 2ω2

z

) (11.3)

The three trap modes behave as harmonic oscillators but differ greatly in
the partition of energy between kinetic and potential. The axial motion
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has equal average kinetic and potential energy as for a mass bound har-
monically on a spring. The cyclotron motion is mainly the circular motion
in a magnetic field at a high speed, so the energy is predominantly kinetic.
On the other hand, the magnetron motion is a slow drift and the energy
is almost entirely potential. In fact, the potential energy (and the total
energy) in the magnetron mode decreases as its radius increases, even as
its kinetic energy increases. Therefore an ion at the center of the trap is
in unstable equilibrium on top of this potential hill and does not leave the
trap only because it has no way of losing energy and momentum.

One important application of Penning traps is in precision mass measure-
ment. From the cyclotron frequency of eB/mc, we see that we can get
the ratio of two atomic masses by measuring the ratio of their cyclotron
frequencies in the same B field. This is relatively easy in an ideal trap
as seen from the expression in (11.3) for the radial modes. But even in
the presence of real life non-idealities, such as a small misalignment of the
magnetic and electric field axes (tilt), or machining imperfections in the
electrodes leading to an eccentricity in the hyperboloids, we can obtain the
cyclotron frequency from the following invariance theorem

ω2
c = ω′2

c + ω2
z + ω2

m

For a typical ion of mass 28 amu, the trap cyclotron frequency is about
4.5 MHz in a magnetic field of 8.5 T. The trap voltage is adjusted to make
the axial frequency 160 kHz, which gives a magnetron frequency of 2.8 kHz.
This results in the following hierarchy of frequencies ω′

c 	 ωz 	 ωm. Then,
from the above relation, one only needs to measure ω′

c to the precision
desired for the mass measurement; ωz and ωm need to be measured to
correspondingly lower precision.

2. Paul trap

The Paul trap is an example of dynamic stabilization. It uses the same
quadrupole E field configuration as for the Penning trap shown in Fig. 11.15,
but with an oscillating potential applied between the endcaps and the ring
electrode. The field at the center of the trap in the presence of a DC field
is a saddle point, with a force toward the center (trapping force) in one
direction but away from the center (destabilizing force) in the orthogonal
direction.∗ But the particle can be stably trapped if the saddle point is
rotated fast enough that the particle does not have enough time to roll off,
which can be achieved by having an oscillatory potential. The idea is shown
in Fig. 11.16. The rotation of the saddle point creates a pseudopotential
which is a harmonic well in all directions.

∗This can also be seen as a consequence of Earnshaw’s theorem which states that it is
impossible to create a point of stable equilibrium in a source free region.
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Figure 11.16: Dynamic stabilization in a Paul trap. (a) The quadrupole
potential has a saddle point in the presence of a DC field. (b) The
presence of an AC field is equivalent to rotating the saddle, which creates
a pseudopotential well in both directions.

Mathematically, this situation is achieved by replacing in the Penning trap

VT → V◦ − V1 cosωt

where V◦ is the amplitude of the DC field, and V1 is the amplitude of the
AC field oscillating at ω. The resulting equations of motion for the ρ and
z components are

d2ρ

dt2
+

(
e

mρ2◦

)
(V◦ − V1 cosωt)ρ = 0

d2z

dt2
+

(
2e

mρ2◦

)
(V◦ − V1 cosωt)z = 0

If we now make the following substitutions

az = −2aρ = − 8eV◦
mρ2◦ω2

qz = −2qρ = − 4eV1

mρ2◦ω2

ζ =
ωt

2

then the equations of motion reduce to the following Mathieu equations

d2ρ

dζ2
+ (aρ − 2qρ cos 2ζ)ρ = 0

d2z

dζ2
+ (az − 2qz cos 2ζ)z = 0
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As expected, the Mathieu equations have stable solutions for only certain
values of a and q, which in turn depend on m and ω, and shows that the
saddle must be rotated sufficiently fast for a given mass to make the motion
stable. The first stability region in aq space, shown in Fig. 11.17, is the
most important since the trap is usually operated with a = 0 (i.e. V◦ = 0).
Then the stable operation requires q to be less than 0.85. This is achieved
by selecting a suitable combination of V1 and ω for a given mass m.

Figure 11.17: Mathieu stability diagram. First region of stability of the
Mathieu equation in aq space. The intersecting shaded region is where
both z and ρ motions are stable, and where the trap is operated.

One application of Paul traps is as a mass analyzer—to get a mass spectrum
of fragments from the dissociation of a sample. In this case the frequency
of operation is constantly reduced to make the trap unstable for all masses
below a certain value. As soon as a given fragment becomes unstable, it
hits the endcaps where it produces a current that can be measured.

3. Mode coupling in a Penning trap

When a Penning trap is used for mass measurement, usually only the axial
motion is detected by measuring the image current induced in the endcaps
by the oscillating charge. The radial modes are detected by coupling to the
axial mode. This mode coupling is an application of the classical coupled
oscillator system dealt with in Chapter 2, “Preliminaries.”

The detection makes the axial motion that of a damped oscillator. The
equilibrium temperature is determined by the Johnson noise of the detector,
which is 4.2 K if the trap is kept in a liquid He bath. The radial modes
are nominally undamped (which is important for precision measurements)
since the trap is azimuthally symmetric, and radiation damping at these
frequencies takes hundreds of thousands of years. The azimuthal symmetry
is only broken by the split guard ring electrodes. By applying an RF voltage
at a frequency ωp across the two halves of the upper guard ring, a time
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varying, diagonal quadrupole potential varying as zx cosωpt is produced.
To an ion in, for instance, a large cyclotron orbit, such a field gives kicks
in the axial direction and couples the two modes. These kicks are in phase
if ωp = ω′

c − ωz. Under such resonant coupling, the classical action swaps
back and forth between the two modes at a frequency determined by the
strength of the coupling—the Rabi frequency for an analogous two-state
atomic system coupled by a laser field.

We can carry this analogy to the avoided crossing of dressed states in a two-
state quantum system that we saw in Fig. 5.5 of Chapter 5, “Resonance.”
Recall that the energy levels are shifted from their uncoupled values, and
the splitting on resonance is equal to �ωR. When the cyclotron and axial
mode are coupled by the RF field, the new normal modes in the trap rep-
resent a superposition of the two modes. The role of the populations in
the dressed states is now played by the amplitudes in the normal modes.
The dressed state analysis tells us that the amplitudes have equal axial
and radial components on resonance, but become predominantly one or the
other far from resonance. Thus, sufficiently close to resonance, both nor-
mal modes are excited and can be detected through the axial component of
their motions. As the coupling frequency is tuned through the resonance,
the two modes repel each other. From the splitting on resonance, we get
the Rabi frequency. Once we know the Rabi frequency for a given coupling
field strength, we know the exact time-amplitude product to apply different
pulses, e.g. a π-pulse to get a complete swap of the mode amplitudes.

The coupling also results in cooling of the radial modes. An initially hot
cyclotron mode is cooled by having the coupling drive on until it cools
by coupling to the 4.2 K axial detector bath. The cooling limit is obtained
from a thermodynamic argument as follows. The entropy change associated
with the emission of one RF coupling photon is

ΔS =
�ωz

Tz
− �ω′

c

Tc

This process continues until, at equilibrium, there is a reversible process
with no net change in entropy, so that

�ωz

Tz
=

�ω′
c

Tc
=⇒ Tc =

ω′
c

ωz
Tz

The same argument holds for the magnetron mode except that, because it
is at the top of a potential hill, its energy is positive and its “temperature”
negative. An ion in a large magnetron orbit is “cooled” to the center of the
trap with a coupling field at ωz + ωm.
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4. Sideband cooling

Laser cooling in ion traps, first proposed by Dehmelt and Wineland, is
called sideband cooling, and is actually a quantized version of Doppler
cooling that we saw in the beginning of this chapter. For the trapped
particle, the motional degrees of freedom are quantized into discrete energy
levels, which are evenly spaced by ωt if the trap potential is harmonic with
oscillation frequency ωt. The idea in sideband cooling, as shown in Fig.
11.18(a), is to excite the trapped particle at a frequency ωc = ω◦ − ωt, i.e.
on a motion-induced sideband. Since the subsequent spontaneous decay
is most probably at a frequency ω◦, one quantum of trap motion will be
lost in each combined excitation/decay cycle. This works best when the
spontaneous decay width Γs is � ωt, in which case it is possible to cool the
particle to the lowest quantum state of the trap.

Figure 11.18: (a) Sideband cooling scheme. The harmonic oscillator en-
ergy levels are shown for the trapped particle in the ground |g〉 and excited
|e〉 states. The cooling frequency is ωc = ω◦ − ωt so that an atom in vi-
brational level νg of state |g〉 is excited to level νe − 1 of state |e〉, from
where it decays predominantly to level νg − 1 of state |g〉 resulting in
cooling. (b) Heating occurs because the laser at ωc causes spontaneous
Raman scattering whose Stokes component corresponds to transfer from
level νg = 0 to level νg = 1. The stronger Rayleigh scattering neither
heats nor cools.

The ultimate cooling limit is set by Raman scattering in which atoms ini-
tially in the νg = 0 level absorb a laser photon at ω◦ − ωt and emit a
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Stokes line at ω◦ − 2ωt, winding up in the νg = 1 level, as shown in Fig.
11.18(b). Both the νe = 0 and νe = 1 levels of the excited state can serve
as a near-resonant intermediate state. The cooling limit is reached when
the cooling rate Rc times the number n1 in the νg = 1 level is equal to the
Raman heating rate RH times the number n◦ in the νg = 0 level. Roughly
speaking, Rc is the on-resonant excitation rate ω2

R/Γs [from Eq. (6.16) of
Chapter 6] times the branching matrix element β to go from νg = 1 to
νg = 0, while RH is (taking only intermediate vibrational level νe = 0 into
account) the off-resonant excitation rate Γsω

2
R/(2δ)

2 times the branching
ratio β to obtain the probability of winding up in the νg = 1 level.

Equilibrium requires

n◦RH = n1Rc =⇒ n◦Γsω
2
Rβ

(2ωt)2
=

n1ω
2
Rβ

Γs

where we have used δ ≡ ωc − ω◦ = −ωt. Thus

n1

n◦
=

Γsω
2
RΓs

4ω2
tω

2
R

=

(
Γs

2ωt

)2

independent of the intensity (which we assumed was � Γs to avoid power
broadening).

This gives an estimated temperature of (from n1 = n◦e−�ωt/kBT )

kBT =
�ωt

ln(n◦/n1)
=

�ωt

2 ln(2ωt/Γs)

The minimum value of this temperature is reached when ωt = eΓs/2, and
has a value

kBTmin =
e�Γs

4

This limit is similar to the limit of �Γs/2 for Doppler cooling of neutral
atoms that we saw earlier.

A single laser cooled ion is a spectroscopist’s dream.

(i) It is usually is inside an ultra-high vacuum chamber, so that pertur-
bations due to collisions with background atoms is negligible.

(ii) It is cold, therefore the second-order Doppler shift is negligible.

(iii) The cold ion is tightly confined (in the Lamb–Dicke regime), so that
its emission is recoilless which is important for applications such as
next-generation optical clocks.



Ion trapping 365

As an example of laser cooling of ions, we consider the case of Ca+. Neutral
Ca is a two electron atom, but in the singly ionized state it is a one electron
atom with energy level structure similar to that of the alkali atoms. The
relevant low lying energy levels of Ca+ are shown in Fig. 11.19. Laser
cooling is done on the E1 allowed S1/2 → P1/2 transition at 397 nm. The
linewidth of the P1/2 state is Γ/2π = 20 MHz, which gives a cooling limit
of 100 μK. From the P1/2 state the ion has a finite probability of decaying
to the metastable D3/2 state. Selection rules show that an ion in this state
can only decay to the ground state by an E2 transition. As a consequence,
the lifetime of this state is about 1 s, and an ion decaying to this state is
lost from the cooling cycle. Therefore, as for laser cooling of alkali atoms,
a repumping laser driving the D3/2 → P1/2 transition (at 866 nm) is
required to bring the ion back to the cooling cycle.

Figure 11.19: Low lying energy levels of Ca+, showing the laser wave-
lengths required for cooling, repumping, and shelving.

A separate laser driving the D3/2 → P3/2 transition at 850 nm is called the
shelving laser (which will be important for quantum computation that we
will see in detail in the next section). From the P3/2 state, the ion has a
finite probability of decaying to the D5/2 state, where it remains “shelved”
until it decays to the ground state. As with the other D state, decay to the
ground state is through E2 radiation, so the lifetime is of order 1 s. The
ion on the cooling cycle is called bright because it fluorescences from the
laser radiation, while the ion in the D5/2 state is called dark because it
does not interact with the laser. This dark to bright transition shows an
interesting property of quantum systems, namely a quantum jump. The
signature of this jump is that the transition is sudden, so that the on-off
periods have no transition time between them. The statistical average of
all the off periods over a long observation time gives the lifetime of the D5/2

state.

When the S1/2 → P1/2 is used for cooling, the lowest energy is of the order
of the linewidth of 20 MHz. Assuming that trap frequency is a few MHz,
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this means that vibrational levels up to νg ≈ 10 are occupied (on average).
To cool to the lowest vibrational level of the trap and hence be in the Lamb–
Dicke regime, sideband cooling on the S1/2 → D5/2 transition is required
because the D5/2 state has a linewidth of order of 1 Hz.
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5. Quantum computation in a linear Paul trap

One important application of trapped ions is in quantum computation. The
bits in a quantum computer, called qubits, can take on any superposition
value between 0 and 1, while the bits of a classical computer can be only
one of the two. This feature, along with other quantum mechanical aspects
like entanglement, can be exploited to compute some things much faster
than can be done on a classical computer. The trapped laser cooled ion is
an almost ideal qubit because it is a single particle in a perturbation free
environment, and its energy levels can be addressed very precisely using
lasers. The 0 and 1 state are the ground state and a metastable state
respectively. Ca+ ions in a linear Paul trap are now the species of choice
for quantum computing because the transitions, as we have already seen,
are accessible with low-cost diode lasers.

The linear Paul trap is an elongated version of the 3D trap discussed
earlier—it uses the same oscillatory potential to trap ions in the xy plane,
but along the z direction the ions are nominally untrapped and there is
only a weak static potential to prevent then from escaping. The simplest
configuration, shown schematically in Fig. 11.20, consists of four cylindri-
cal electrodes divided into three segments. The AC potential required for
providing radial confinement is applied to all the three segments. For axial
confinement, the outer two segments are maintained at a slightly higher
potential compared to the middle segment. A string of ions, each one act-
ing as a qubit, is then trapped near the central axis with interion repulsion
keeping them apart but interacting. Conditional operations on the qubits
are induced using collective modes of the string.

Figure 11.20: Linear Paul trap. Each electrode is a cylinder divided into
three segments, which are isolated to have different potentials. Radial
(xy) confinement is provided by the AC field (as in the 3D Paul trap) ap-
plied to all three segments. In the axial (z) direction, the ion is nominally
untrapped and only weakly confined using a small DC potential on the
outer two segments.
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G. Problems

1. Number of atoms in a MOT

The number of atoms N trapped in a MOT can be estimated using a
calibrated photodiode. What is the total optical power P falling on the
photodiode if it subtends a solid angle of Ω at the cloud, I is the beam
intensity of each of the six trapping beams, and δ is the detuning.

Solution

The scattering rate for a single atom from each trapping beam is

Rsc =
Γ

2

[
I/Is

1 + (2δ/Γ)2 + I/Is

]
Thus the total scattering rate from six beams is 6Rsc.

Noting that the energy of one photon is hc/λ, the total power falling on
the photodiode from N atoms is

P =
hc

λ

Ω

4π
6RscN

2. Absorption imaging

Let the atomic density at a given point in a cloud of trapped atoms be N .
If you send resonant light of intensity I◦, its intensity reduces to IN after
absorption. Find N from IN .

Solution

The intensity after absorption is related to the incident intensity as

IN = I◦e−OD

where OD is the optical density defined as

OD = Nσ�

Here N is the density, � is the thickness of the cloud at that point, and σ
is the (resonant) scattering cross-section.

From the definition of the cross-section, it is

σ =
Absorption rate

Incident photon flux
=

Rabs

I/�ω
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Since the saturation intensity is defined such that the absorption rate is
Γ/2 when I = Is, we get the on-resonance scattering cross-section as

σ =
�ωΓ

2Is
=

3λ2

2π

Therefore the atomic density is given by

N =
1

σ�
ln

(
I◦
IN

)
=

2π

3λ2�
ln

(
I◦
IN

)





Appendix A

Standards

E
ver since humans started living in community settlements, day-to-day
activities have required the adoption of a set of standards for weights

and measures. For example, an everyday statement such as “I went to the
market this morning and bought 2 kgs of vegetables; the market is 1 km
away and it took me 15 mins to get there” uses the three standards of
mass, length, and time. Without a common set of measures for these
quantities, we would not be able to convey the quantitative meaning of this
statement. The scientific study of such measures is called metrology, and
it is an important part of modern industrial societies. In most countries,
standards for weights and measures are maintained by national institutions,
in coordination with similar bodies in other countries. The definitions and
maintenance of standards are improving constantly with progress in science
and technology.

In olden times, each local community had its own set of measures defined
by arbitrary man-made artifacts. As long as inter-community trade was
not common, this proved to be sufficient. Usually kings and chiefs used
their power to set the standards to be employed in their territories. For
example, the measure of length “inch” was probably defined as the size
of the thumb of a tribal chief and the length of his foot gave birth to a
standard “foot.” As trade and commerce increased it became necessary
to introduce more global standards. In addition, with the rise of rational-
ism and modern science in 17th century Europe, the limitations of such
arbitrary definitions soon became apparent. For instance, the results of
controlled scientific experiments in different laboratories could not be com-
pared unless all scientists agreed on a common set of standards. Here, we
will see the evolution of rational standards for time, length, and mass,
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from those early days to their modern scientific definitions.

Modern standards have to satisfy several important requirements.

(i) They should be invariant, i.e. the definition should not change with
time.

(ii) They should be reproducible, i.e. it should be possible to make
accurate and faithful copies of the original.

(iii) They should be on a human scale, i.e. of a size useful for everyday
purposes.

(iv) They should be consistent with physical laws, i.e. the minimum num-
ber of independent units should be defined and other units derived
from these using known physical laws.

As we will see in this appendix, it is only in recent times that these require-
ments have been met in a consistent manner. An important way to achieve
these goals is to define standards based on fundamental constants of nature.
This helps us get away from artifacts and makes the definition universal.
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1. Time standards

Time keeping is as old as the earth itself since all it requires is a periodic
process. The rotation and revolution of the earth give rise to daily and
yearly cycles, respectively, and this has been used by nature as a clock
much before humans evolved. Many living organisms, including humans,
show diurnal (24 hour) rhythms regulated by the sun, and seasonal patterns
that repeat annually. It is therefore natural that the earliest man-made
clocks also relied on the sun. One example is the sundial. It consisted of a
pointer and a calibrated plate, on which the pointer cast a moving shadow.
Of course this worked only when the sun is shining. The need to tell the
time even when the sun was not out, such as on an overcast day or in the
night, caused man to invent other clocks. In ancient Egypt, water clocks
known as clepsydras were used. These were stone vessels with sloping sides
that allowed water to drip at a constant rate from a small hole near the
bottom. Markings on the inside surface indicated the passage of time as
the water level reached them. While sundials were used during the day to
divide the period from sunrise to sunset into 12 equal hours, water clocks
were used from sunset to sunrise. However, this definition made the “hours”
of the day and night different, and also varying with the season as the length
of the day changed. Other more accurate clocks were used for measuring
small intervals of time. Examples included candles marked in increments,
oil lamps with marked reservoirs, hourglasses filled with sand, and small
stone or metal mazes filled with incense that would burn at a certain rate.

Time measurements became significantly more accurate only with the use of
the pendulum clock in the 17th century. Galileo had studied the pendulum
as early as 1582, but the first pendulum clock was built by Huygens only in
1656. As we now know, the “natural” period of the pendulum clock depends
only on the length of the pendulum and the local value of g, the acceleration
due to gravity.∗ Huygens’ clock had an unprecedented error of less than 1
minute per day. Later refinements allowed him to reduce it to less than 10
seconds a day. While very accurate compared to previous clocks, pendulum
clocks still showed significant variations because even a few degrees change
in the ambient temperature could change the length of the pendulum due
to thermal expansion. Therefore clever schemes were developed in the 18th
and 19th centuries to keep the time period constant during the course
of the year by compensating for seasonal changes in length. Pendulum
clocks were also not reproducible from one place to another because of
variations in the value of g. Finally, this and all other mechanical clocks

∗This is the familiar result from high school that T = 2π
√

�/g. The fact that the period
of the pendulum is independent of the mass of the bob has a lot of important physics
buried in it. It comes from the principle of equivalence, which states that the inertial
mass (which is what you use when calculating momentum mv or acceleration F/m) is
exactly equal to the gravitational mass (which determines weight). This principle was
exploited by Einstein to formulate the general theory of relativity.
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(e.g. based on oscillations of a balance wheel as in wrist watches) suffered
from unpredictable changes in time-keeping accuracy with wear and tear of
the mechanical parts.

Mechanical time keeping devices were useful in telling the time whenever we
wanted. As a time standard, however, the rotation rate of the earth proved
to be more regular than anything man made. Despite the many advances
in technology of mechanical clocks, they were still less accurate than the
earth “day.” Moreover, the success of astronomical calculations in the 19th
century led scientists to believe that any irregularities in the earth’s rotation
rate could be adequately accounted for by theory. Therefore, until 1960,
the unit of time “second” was defined as the fraction 1/86400 of the “mean
solar day” as determined by astronomical theories. The earth’s rotation
rate was the primary time standard, while mechanical clocks were used as
secondary standards whose accuracy was determined by how well they kept
time with respect to earth’s rotation.

As clock accuracies improved in the first half of the 20th century, especially
with the development of the quartz crystal oscillator, precise measurements
showed that irregularities in the rotation of the earth could not be accounted
for by theory. In order to define the unit of time more precisely, in 1960
a definition given by the International Astronomical Union based on the
tropical year was adopted. However, scientists were still looking for a truly
universal standard based on some physical constant. They were able to do
this in the late 1960s based on the predictions of quantum mechanics. As
you might know, quantum mechanics was developed in the early part of the
20th century to explain the discrete energy levels and spectral lines in atoms.
Planck’s famous relation between the energy and frequency of a photon,
E = hν, which signaled the birth of quantum mechanics, implies that atoms
have a unique internal frequency corresponding to any two energy levels.
Since these energy levels are characteristic of an atom anywhere in the
universe, a definition based on the atom’s internal frequency would be truly
universal. The ability to measure such frequencies accurately was developed
only about 50 years ago. Soon after, in 1967 the following definition of the
unit of time was adopted: the second is the duration of 9192631770 periods
of the radiation corresponding to the transition between the two hyperfine
levels of the ground state of the cesium-133 atom.

Modern atomic clocks are built according to the above definition. The clock
consists of a vacuum chamber with a cesium atomic beam, and a radio-
frequency oscillator which is tuned to drive the atoms between the two
hyperfine levels. There is maximum transfer of energy from the laboratory
oscillator to the atoms when the atoms are in resonance, i.e. the oscillator
frequency matches the internal frequency of the atom. A feedback circuit
locks these two frequencies and ensures that the laboratory clock does not
drift with respect to the atom frequency. With this feedback, the best
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atomic clocks (used as primary standards) are so precise that they lose less
than 1 second in a million years! The time standard is also universal in
the sense that anybody who builds an atomic clock will get exactly the
same frequency because all atoms are identical, and their behavior under
controlled experimental conditions is the same anywhere in the universe.

Life in the modern high-technology world has become crucially dependent
on precise time. Computers, manufacturing plants, electric power grids,
satellite communication, all depend on ultra-precise timing. One example
that will highlight this requirement is the Global Positioning System (GPS),
which uses a grid of satellites to tell the precise location of a receiver any-
where on earth. Transport ships plying the vast oceans of the world now
almost completely rely on the GPS system for navigation. The system
works by triangulating with respect to the three nearest satellites. The dis-
tance to each satellite is determined by timing the arrival of pulses traveling
at the speed of light. It takes a few millionths of a second for the signal
to reach the receiver, which gives an idea of how precise the timing has to
be to get a differential reading between the three signals. Such demands
of modern technology are constantly driving our need for ever more precise
clocks. The cesium fountain clock at National Institute of Standards and
Technology (NIST) in the United States, and other national labs, is one
example of how the latest scientific research in laser cooling has been used
to improve the accuracy of the clock by a factor of 10. Another promising
technique is to use a single laser-cooled ion in a trap, and define the second
in terms of the energy levels of the ion. The ion trap represents an almost
ideal perturbation-free environment where the ion can be held for months
or years. Perhaps one day in the not-so-far future we will see ion-trap clocks
in all homes!
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2. Length standards

As mentioned before, for a long time length standards were based on arbi-
trary measures such as the length of the arm or foot.∗ The first step in the
definition of a rational measure for length was the definition of the “meter”
by the French in 1793, as a substitute for the yard. It was defined such
that the distance between the equator and the north pole, as measured on
the great circle through Paris, would be 10,000 kilometers. This gave a
convenient length scale of one meter, which was very close to the old yard
but now invariant. A prototype meter scale made of a platinum-iridium bar
was kept in Paris. The alloy was chosen for its stability and exceptionally
low thermal expansivity. Copies of this scale were sent to other nations and
were periodically recalibrated by comparison with the prototype.

The limitations of the artifact meter scale in terms of invariance became
apparent as more precise experiments started to be conducted in the 20th
century. Again the results of quantum mechanics provided a solution. Each
photon has not only a frequency ν but also a wavelength λ, with the two
related by the speed of light c,

νλ = c

Therefore if an atom is excited, it decays to the ground state by emitting
photons of well defined wavelengths corresponding to the energy difference
between the two levels. These photons form a unique line spectrum, or
wavelength signature, of the particular atom. The wavelength of photons
can be measured precisely in optical interferometers by counting fringes as a
function of path length difference in the two arms. Each fringe corresponds
to a path length difference of λ. Therefore, in 1960, the artifact meter scale
was replaced by a definition based on the wavelength of light—1 meter was
defined as 1650763.73 wavelengths of the orange-red line in the radiation
spectrum from electrically excited krypton-86 atoms. Anybody who wanted
to make a standard meter scale could do it by comparing to the krypton
line, thus making it universally reproducible.

The advent of lasers has made the measurement of wavelength in optical
interferometers very precise. In addition, the frequency of the laser can be
measured accurately with respect to atomic clocks. In order to eliminate
the fact that the definition of the meter was tied to the wavelength of a
particular line from the krypton atom, the meter was redefined in 1983
using the above frequency-wavelength relation: 1 meter is the length of the
path traveled by light in vacuum during a time interval of 1/299792458 of a
second. It is important to note that this definition makes the speed of light

∗Even today, roadside flower sellers in Madras will sell flowers strung together by the
mozham, defined as the length of the seller’s arm from the elbow to the tip of the
extended middle finger, obviously varying from one person to the next.
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exactly equal to 299792458 m/s and demonstrates our faith in the special
theory of relativity, which postulates that the speed of light in vacuum is a
constant. As our ability to measure the meter becomes more accurate, it is
the definition of the meter that will change in order to keep the numerical
value of the speed of light a constant. In this sense, we have actually
dispensed with an independent standard for length and made it a derived
standard based on the standard of time and a fundamental constant of
nature c.

Using iodine-stabilized HeNe lasers, the wavelength of light and thus the
definition of the meter is now reproducible to about 2.5 parts in 1011. In
other words, if we were to build two meter scales based on this definition,
their difference would be about one million times smaller than the thickness
of a human hair!
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3. Mass standards

In olden societies, mass standards were based on artifacts such as the weight
of shells or of kernels of grain. The first scientific definition of mass adopted
in the 18th century was the “gram,” defined as the mass of 1 cubic centime-
ter of pure water at 4◦C. This definition made the density of water exactly
1 g/cc. The definition survived till almost the end of the 19th century.
It was replaced in 1889 when the 1st General Conference on Weights and
Measures sanctioned an international prototype kilogram to be made of a
cylinder of platinum-iridium alloy and kept at the International Bureau of
Weights and Measures in France. It was declared that henceforth the proto-
type would be the unit of mass. Among the base units, mass is the only one
that is still based on an artifact and not on some fundamental property of
nature. Environmental contamination and material loss from surface clean-
ing are causing the true mass of the kilogram to vary by about 5 parts in
108 per century relative to copies of the prototype in other nations. There
are many physical constants that depend on mass, and the drift of the
mass standard means that these constants have to be periodically revised
to maintain consistency within the SI system.

There are several proposals to replace the mass standard with a universal
one based on physical constants. There are two major approaches taken
in this effort—one based on electrical measurements, and the other based
on counting atoms. In the electrical measurement approach, an electrical
force is balanced against the gravitational force on a kilogram mass. The
electrical force is determined by the current and voltage used to produce
the force. As we will see later, electrical standards are now based on funda-
mental constants, therefore the kilogram will also be related to fundamental
constants.

The atom counting approach is a promising proposal that uses the tremen-
dous advances made in silicon processing technology in recent decades. It
is now possible to make large single crystals of silicon with very high purity
and a defect rate that is less than one part in 1010, i.e. atoms in the crystal
are stacked perfectly and less than one atom in 10 billion is out of place!
Such single crystals also cleave along certain symmetry planes with atomic
precision, i.e. the crystal facet after a cut is atomically flat. Laser inter-
ferometry can be used to measure the distance between the outer facets
of the crystal very precisely. This yields the precise volume of the crystal.
Similarly, X-ray diffraction can be used to measure the spacing between suc-
cessive atoms (lattice spacing) very precisely. The volume and the lattice
spacing effectively tell us how many atoms there are in the crystal. From
the definition of a mole we know that NA silicon atoms will have a weight
of MSi × 10−3 kilograms, where NA is Avogadro’s constant and MSi is the
atomic mass of silicon. Therefore, a knowledge of the physical constants
NA and MSi, combined with length measurements for the size of the crystal,



Standards 379

will give the mass of the sample in kilograms. The present limitation in us-
ing a silicon mass standard is the precise knowledge of NA. However, there
are several experiments currently being performed that might yield a more
precise and useful value for this constant. When this happens, the kilogram
would be redefined as being the mass of a specific number of silicon atoms,
and we would have eliminated the only remaining artifact standard.
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4. Electrical standards

We finally discuss the use of fundamental constants in defining electrical
standards. Electrical units can all be related to the base units of mass,
length, and time through physical laws. For example, Coulomb’s law for the
force between two charges q1 and q2 separated by a distance r is expressed
as

F = K
q1q2
r2

The proportionality constant K appearing in the above equation can be
interpreted in two ways. From a physicist’s point of view, it is just a matter
of definition and can be set to 1 without any change in the underlying
physics. In such a case, the units for measuring charges are so defined
that q2/r2 has the dimensions of force. Thus charge becomes a derived
unit which can be related to the dimensions of mass, length, and time
through the above equation. From a practical point of view (which is
followed in the SI system of units), it is useful to assign an independent
unit for charge (coulomb in the SI system).∗ The constant K then serves
to match the dimensions on both sides of the equation. Thus in the SI
system K = 1/4πε◦ with ε◦ having units of farad/meter. It should be
emphasized that both points of view are valid; however the latter introduces
concepts such as permittivity of vacuum which needlessly complicates our
understanding of the physics.

Whatever the point of view, the units have to be consistent with Coulomb’s
law. Therefore, two unit charges placed unit distance apart in vacuum
should experience a force of K units. This is how electrical standards have
to be finally related to the mechanical standards in a consistent manner.
While it may not be practical to measure forces on unit charges this way,
other consequences of the electromagnetic laws make a practical comparison
of electrical and mechanical units possible. For example, it is possible to
measure electrical forces in current carrying conductors by balancing them
against mechanical forces. This would be a realization of the ampere.

These traditional methods of defining electrical standards showed a lot of
variation over time. However, recently it has been possible to base the
definitions of electrical quantities using invariant fundamental constants.
Two effects are used for their definition: the Josephson effect, and the
quantum Hall effect. The Josephson effect relates the frequency of an AC
current generated when a DC voltage is applied across a tunnel junction
between two superconductors. The frequency of the current is given by

f =
2e

h
V

∗In SI units, it is actually the ampere that is the base unit; it is defined as the constant
current that has to flow along two infinite parallel conductors placed 1 meter apart so
as to produce a force of 2× 10−7 N/m. In this system, 1 coulomb is 1 ampere-second.
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Figure A.1: Quantum Hall effect. The plot shows the steps in the Hall
resistance of a semiconductor sample as a function of the magnetic field.
The steps occur at values given by the fundamental constant h/e2 divided
by an integer i. The figure shows the steps for i = 2, 3, 4, and 5. The effect
is called the quantum Hall effect and was discovered by von Klitzing, for
which he won the Physics Nobel Prize in 1985. Since 1990, the effect
has been used for a new international standard for resistance called 1
klitzing, defined as the Hall resistance at the fourth step = h/4e2. The
data are from my colleague Prof. Aveek Bid, based on a sample he made
at Weizmann Institute in Israel, highlighting the truly universal nature
of this standard.

where e is the charge on the electron. In SI units, a DC voltage of 1
μV produces a current with a frequency of 483.6 MHz. The DC voltage
can therefore be related to the time or frequency standard through the
fundamental constant h/2e. The quantum Hall effect is a phenomenon
discovered by von Klitzing in 1980. He showed that at low temperatures and
high magnetic fields, the Hall resistance in certain semiconductor samples
shows quantized steps (see Fig. A.1). The fundamental unit of resistance
is h/e2 (about 25.7 kΩ in SI units), and the steps occur at values of this
constant divided by an integer i. Since 1990, the SI standard of ohm is
defined using the i = 4 step in the Hall resistance of a semiconductor sample.
Given the robust nature of the steps, it is easy to reproduce the resistance
and its value is determined only by physical constants. The standard volt
and ohm in the SI system have thus been successfully tied to fundamental
constants of nature. The definition of current (ampere) follows from Ohm’s
law I = V/R.
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5. Summary

We have thus seen a trend where fundamental constants play an increas-
ingly important role in eliminating artifact standards and in deriving some
units from others. Our faith in physical laws makes us believe that these
constants are truly constant, and do not vary with time. Ultimately, we
would like to find enough fundamental constants that we are really left with
only one defined standard and all others are derived from it, just like we
have been able to do for length and time by specifying the value of c, so
that there are only two standards for mass and time. All indications are
that when we understand the force of gravity from a quantum mechanical
perspective, mass (or inertia) and spacetime will be linked in a fundamental
way. When this happens, the unit of mass will most likely be fundamentally
related to the unit of time. We will be left with just one arbitrary defini-
tion for “second” which sets the scale for expressing all the laws of physics.
Someday, if we were to meet an intelligent alien civilization and would
like to compare their scientific knowledge with ours, we would only need to
translate their time standard to ours. Will this ever happen? “Time” alone
will tell!
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6. Additional items

(i) A brief history of time-keeping

As mentioned in the main text, the oldest clocks in the world are sundials.
Many designs for sundials exist. They have evolved from simple designs of
flat horizontal or vertical plates to more elaborate forms that compensate
for the motion of the sun in the sky during the course of the year. For
example, one design has a bowl-shaped depression cut into a block of stone,
with a central vertical gnomon (pointer) and scribed with sets of hour lines
for different seasons.

The oldest clocks that did not rely on observation of celestial bodies were
water clocks. They were designed to either drip water from a small hole
or fill up at a steady rate. Elaborate mechanical accessories were added
to regulate the rate of flow of water and display the time. But the inher-
ent difficulty in controlling the flow of water led to other approaches for
time keeping. The first mechanical clocks appeared in 14th century Italy,
but they were not significantly more accurate. Accuracy improved only
when the Dutch scientist Huygens made the first pendulum clock in 1656.
Around 1675, Huygens also developed the balance wheel and spring assem-
bly, which is still found in mechanical wrist watches today. In the early
18th century, temperature compensation in pendulum clocks made them
accurate to better than 1 second per day.

John Harrison, a carpenter and self-taught clockmaker, refined tempera-
ture compensation techniques and added new methods of reducing friction.
He constructed many “marine chronometers”— highly accurate clocks that
were used on ships to tell the time from the start of the voyage. A com-
parison of local noon (that is, the time at which the sun was at its highest
point) with the time on the clock (which would give the time of the noon
at the starting point) could be used to determine with precision the longi-
tude of the ship’s current position. The British government had instituted
the Longitude Prize so that ships could navigate on transatlantic voyages
without getting lost; specifically, the prize was for a clock capable of de-
termining longitude to within half a degree at the end of a voyage from
England to Jamaica. Harrison’s prize-winning design (in 1761) kept time
on board a rolling ship nearly as well as a pendulum clock on land, and was
only 5.1 seconds slow after 81 days of rough sailing, about 10 times better
than required.

The next improvement was the development of the nearly free pendulum at
the end of the 19th century with an accuracy of one hundredth of a second
per day. A very accurate free-pendulum clock called the Shortt clock was
demonstrated in 1921. It consisted of two pendulums, one a slave and
the other a master. The slave pendulum gave the master pendulum gentle
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pushes needed to maintain its motion, and also drove the hands of the clock.
This allowed the master pendulum to remain free from mechanical tasks
that would disturb its regularity.

Time keeping was revolutionized by the development of quartz crystal clocks
in the 1920s and 30s. Quartz is a piezoelectric material, meaning that it
generates an electric field when mechanical stress is applied, and changes
shape when an electric field is applied. By cutting the crystal suitably
and applying an electric field, the crystal can be made to vibrate like a
tuning fork at a constant frequency. The vibration produces a periodic
electrical signal that can be used to operate an electronic display. Quartz
crystal clocks are far superior than mechanical clocks because they have
no moving parts to disturb their regular frequency. They dominate the
commercial market due to their phenomenal accuracy and low cost. For
less than a dollar, you can get a watch that is accurate to about 1 second
per year! And you do not have to worry about winding the clock every day
or replacing the battery more than once a year or so.

Despite this success, quartz crystal clocks ultimately rely on a mechani-
cal vibration whose frequency depends critically on the crystal’s size and
shape. Thus, no two crystals can be precisely alike and have exactly the
same frequency. That is why they cannot be used as primary time stan-
dards. And atomic clocks, which are used as primary standards, are exactly
reproducible (when operated under the prescribed conditions). In Fig. A.2,
we see that the accuracy of clocks in the last millennium has increased
exponentially on a logarithmic scale. Extrapolating into the near future,
we expect optical atomic clocks to be 1000 times more accurate than the
current radio-frequency standard.

Figure A.2: Exponential improvement in clock accuracy over the last
millennium. Note the logarithmic scale of the y axis.
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(ii) Frequency measurements

Measuring the frequency in an atomic clock is similar to pushing a child on
a swing. The child has a natural oscillation frequency on the swing, and can
be thought of as the atom. The person pushing the child periodically can be
thought of as the laboratory oscillator. If the two frequencies are identical,
the person will give a push to the child each time the child reaches her and
will keep the child swinging. On the other hand, if the two frequencies are
not identical, the pushes will come at random times, sometimes slowing the
child and sometimes speeding it up. The average effect will be lower and
will tend to zero as the mismatch between the two frequencies increases.

In the separated-oscillatory-fields (SOF) technique, invented by Norman
Ramsey in 1949, there is a period when the system evolves in the “dark,”
unperturbed by the driving field. In the example above, it would be like
giving a push to the child, and then letting the child swing unperturbed
for some time before giving another push. During the time between the
two pushes, the frequency difference between the two oscillators builds up
as a phase difference, so that after sufficient dark time the person pushing
is exactly out of phase with the child and the second push brings the child
to a complete halt. Even a small frequency difference can be built up to
a large phase difference by increasing the dark period. Thus the frequency
(or more precisely, the frequency mismatch) can be measured more and
more precisely by waiting for longer and longer times between the two
pushes. This is the advantage in the latest cesium clocks—by using laser
cooled atoms in a fountain arrangement the dark period is about 1 second,
whereas in older atomic clocks with thermal beams the dark period was a
few milliseconds.

(iii) Fun with dimensions

It is somewhat instructive to play with dimensions of fundamental con-
stants to see how they result in phenomena that can be used for defining
standards. For electrical phenomena at the quantum level, there are two
constants—the charge on an electron e and Planck’s constant h. In the SI
system, e has units of coulombs (C), and h has units of joules/hertz (J/Hz).
It can be verified that h/e has the dimensions of volts/hertz (V/Hz), which
is the quantum mechanical voltage-to-frequency conversion factor. The
actual factor in the Josephson effect is h/2e, but the factor of 2 can be
understood when we remember that the basic charge carriers in a supercon-
ductor are paired electrons, which thus carry charge of 2e. Similarly h/e2

has dimensions of ohms (Ω), and is the basic unit of quantum resistance in
a semiconductor sample.

Continuing with this theme, we expect a deeper understanding of inertia
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when we develop a satisfactory theory of relativistic quantum gravity. The
fundamental constants that are expected to be important in such a theory
are c (for relativistic), h (for quantum), and Newton’s constant G (for
gravity). These constants have values 3 × 108 m/s, 6.6× 10−34 J/Hz, and
6.7×10−11 Nm2/kg2, respectively. The three constants can be combined in
various ways to get other constants that have dimensions of mass, length,
and time. Together the new constants set the scale at which we expect
quantum gravity effects to become significant. This is called the Planck
scale. Thus the Planck length

√
hG/c3 is 1.6 × 10−35 m, the Planck time√

hG/c5 is 5.4× 10−44 s, and the Planck mass
√
hc/G is 2.2× 10−8 kg. It

looks as though only the Planck mass scale is currently accessible to human
technology, and perhaps we will not understand quantum gravity until we
can access the Planck length and time scales.
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What Is a Photon?

All the fifty years of conscious brooding have brought me no closer to answer
the question, “What are light quanta?” Of course today every rascal thinks
he knows the answer, but he is deluding himself.

— Albert Einstein

O
ur current understanding of the photon is based on quantum electrody-
namics (QED), which is arguably the pinnacle of any quantum theory

to date. Feynman, who along with Wheeler is the coauthor of the seminal
paper on the absorber theory of radiation, was instrumental in developing
QED. He later shared the Nobel prize for this work, and called QED “the
strange theory of light and matter.” Strange indeed, but also immensely
successful. In fact, it can be called our most successful theory since its
prediction of the anomalous magnetic moment, (g − 2), of the electron has
been verified to an unprecedented accuracy of 12 digits! Its success means
that it has managed to capture some inherent description of the workings
of nature, so that any future theory has to at least reproduce its quantita-
tive results. Indeed, it is our best example of a quantum field theory, with
its naturally occurring creation and annihilation operators. It is used as a
model for formulating field theories for other interactions—a canonical field
theory if ever there was one.

The idea of this essay, which represents a personal journey into the nature
of the photon, is to show that there are alternate, more understandable ways
of looking at light. Feynman gave up on the absorber theory because he
could not quantize it in a satisfactory manner so as to get the experimental

387
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results of the (g − 2) of the electron and the Lamb shift of the hydrogen
atom. But, this failure may reflect our current way of doing physics, rather
than any fundamental problem. In the immortal words of Wheeler:

Behind it all is surely an idea so simple, so beautiful, that when we
grasp it—in a decade, a century, or a millennium—we will all say to
each other, how could it be have been otherwise? How could we have
been so stupid?

I too think that we will find such a beautiful idea to explain the puzzles of
light, simple enough that it can be explained to high school students.
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Light is a propagating disturbance of the electromagnetic field. It appears
as the solution of a wave equation resulting from the four Maxwell’s equa-
tions in source-free region. Not surprisingly, it was treated as a classi-
cal wave, and seemed to have all the properties that one associates with
a wave—interference, diffraction, reflection and refraction, coherence, etc.
Then came the mystery of blackbody radiation spectrum, which was inex-
plicable from this classical wave picture. In a stroke of genius, Max Planck
(in 1900) made the ad hoc proposal that the energy of the emitted radiaton
is quantized in units of the frequency (E = hν), and with this assump-
tion, he could explain all the features of the spectrum. This ushered in
the “quantum era,” and caused, in the terminology of Thomas Kuhn, a
paradigm shift in our understanding of nature. But the quantization of
light was only an implicit idea in Planck’s theory. The explicit nature of
the light quantum, or photon as it is called now, came with its use by the
young Einstein (in 1905) in explaining the photoelectric effect. He went on
to win the Nobel Prize for this work, because this explanation firmed up
the photon concept in the thinking of scientists, and the (additional) parti-
cle nature of light came to be accepted. Things came a full circle when de
Broglie (in 1924) introduced the idea of wave nature for particles of matter,
showing that wave-particle duality is a fundamental property of everything
in nature, matter and its interactions.

A century later, most of us know how to work with photons. The advent of
lasers, a coherent source of photons, has put an indispensable tool in the
hands of scientists and engineers. Lasers are used everywhere today—in
your computer hard drive, in bar-code scanners in shops, in laser pointers,
in DVD players, in all kinds of surgery including delicate surgery of the
eye, in metal cutting, in the modern research laboratory, to name a few.
We, in our atomic physics laboratory, also use lasers all the time. We use
them for laser cooling, to cool atoms down to a temperature of a millionth
of a degree above absolute zero. We use lasers as optical tweezers, to trap
micron-sized beads and cells. We use lasers in high-resolution spectroscopy,
to understand the structure of atoms and validate fundamental theories.

In short, we know how to use photons, and how to use them well. But do we
understand them? Perhaps not. We certainly have a useful mental picture
of a straight-line beam of particles traveling at the speed of light c. In fact,
we believe that we can actually see a laser beam—think of the familiar red
line coming out of a laser pointer. But a moment’s introspection will make
us realize that what we are “seeing” is actually those photons that scatter
into our eye from the ever-present dust particles in the room. Indeed, it is
quite illuminating (pun intended) to see a light beam entering a vacuum
chamber through a window—it seems to disappear after the window be-
cause there are no particles inside the vacuum chamber to scatter the light.
A simpler experiment can be done if you have access to a plane polarized
beam. If the polarization axis is oriented in the vertical direction, then
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you will not see the beam if you view it from the top. This is because the
scattering probability is exactly zero along the polarization axis. Therefore,
when we say we “see” something, what we are talking about is that some
photons have reached our retina.

Consider the phenomenon of spontaneous emission. One learns that an
atom in an excited state “wants” to go to the lowest-energy ground state.
What do you mean “wants”? Atoms do not have feelings. The excited
state is as good a solution of the Hamiltonian of the atom as the ground
state. Every state is a stable stationary solution (called an eigenstate), just
that they all have different energies. So why is a lower energy better, and
the lowest energy the best? What, in fact, causes spontaneous emission,
i.e. induces the atom to go from a higher to a lower state? Our latest
and most-successful theory to date—quantum electrodynamics (QED)—
says that spontaneous emission is actually stimulated emission, but one
where the stimulation is from the vacuum modes. This may be a clever
way of doing calculations, but it is unsatisfactory because the total energy
in the vacuum modes (called the zero-point energy) is infinity. This is one
of several infinities that plague QED; we know how to work around these
infinities, but it still leaves a bad taste in the mouth.

Equally puzzling is the phenomenon of photon recoil, also known as radi-
ation reaction. This is the momentum kick that an atom∗ receives when
it emits a photon, similar to the recoil that you feel when you fire a gun.
The bullet is a real particle that carries momentum, and the recoil kick
is just a consequence of momentum conservation. But the photon recoil
is due to the momentum transferred by a massless particle of interaction.
This recoil effect is real, in fact Einstein used it in his 1917 paper† to show
that maintaining the Maxwell–Boltzmann velocity distribution in a gas in
thermal equilibrium is crucially dependent on this recoil. And the same
momentum transfer is used for the well-known phenomenon of laser cool-
ing. But, unless the photon is given independent reality, the mechanism by
which the momentum of the atom changes cannot be understood.

Which brings us to the question—is the photon independently real? Let us
not forget that light is an interaction between electrical charges. The big-
bang model of cosmology says that there was a time in the early universe
when only photons were present. It seems illogical to say that the early
universe was full of interactions, but had no matter between which the in-
teractions could occur. It is like saying there is a room full of conversations,
but no people to converse between. Conversation is an interaction between
people. No people, no conversation.

∗I use the word atom to mean any piece of matter.
†A. Einstein, “Quantentheorie der Strahlung (On the Quantum Theory of Radiation),”
Phys. Z. 18, 121–128 (1917). English translation of the paper available in Sources of

Quantum Mechanics, B. L. Van Der Waerden, ed. (Dover, New York, 1968).
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Enter Wheeler and Feynman, and their paper titled “Interaction with the
absorber as the mechanism of radiation.”∗ They show that the photon is
not independently real, and give a satisfactory answer to all of the above
puzzles. In fact, the puzzles—especially that of radiation reaction—were
known for a long time, and many scientists (like Fokker and Schwarzchild)
had proposed solutions. The idea that Wheeler and Feynman developed
was based on an earlier proposal by Tetrode,† a fact that was pointed out
to them by Einstein. As they write in a footnote in the paper:

When we gave a preliminary account of the considerations which appear in this paper,
we had not seen Tetrode’s paper. We are indebted to Professor Einstein for bringing to
our attention the ideas of Tetrode and also of Ritz, who is cited in this article. An idea
similar to that of Tetrode was subsequently proposed by G. N. Lewis:‡ “I am going to
make the . . . assumption that an atom never emits light except to another atom, and
to claim that it is as absurd to think of light emitted by one atom regardless of the
existence of a receiving atom as it would be to think of an atom absorbing light without
the existence of light to be absorbed.§ I propose to eliminate the idea of mere emission of
light and substitute the idea of transmission, or a process of exchange of energy between
two definite atoms or molecules.” Lewis went nearly as far as it is possible to go without
explicitly recognizing the importance of other absorbing matter in the system, a point
touched upon by Tetrode, and shown below to be essential for the existence of the normal
radiative mechanism.

The idea of Tetrode also is to abandon the concept of electromagnetic ra-
diation as an elementary process and to interpret it as a consequence of an
interaction between a source and an absorber. His exact words are worth
repeating:

The sun would not radiate if it were alone in space and no other bodies could absorb its
radiation . . . . If for example I observed through my telescope yesterday evening that star
which let us say is 100 light years away, then not only did I know that the light which
it allowed to reach my eye was emitted 100 years ago, but also the star or individual
atoms of it knew already 100 years ago that I, who then did not even exist, would view
it yesterday evening at such and such a time. One might accordingly adopt the opinion
that the amount of material in the universe determines the rate of emission. Still this
is not necessarily so, for two competing absorption centers will not collaborate but will
presumably interfere with each other. If only the amount of matter is great enough and
is distributed to some extent in all directions, further additions to it may well be without
influence.

Radiation reaction was well known from the fact that a charged particle
on being accelerated loses energy by emitting radiation. This loss can
be interpreted as being caused by a force acting on the particle given in

∗J. A. Wheeler and R. P. Feynman, “Interaction with the absorber as the mechanism of
radiation,” Rev. Mod. Phys. 17, 157–181 (1945).

†H. Tetrode, “Über den Wirkungszusammenhang der Welt. Eine Erweiterung der klas-
sischen Dynamik (About the causal relationship in the world. An extension of classical
dynamics),” Z. Phys. 10, 317–328 (1922).

‡G. N. Lewis, “The nature of light,” P. Natl. Acad. Sci. USA 12, 22–29 (1926).
§I would add that it is equally “absurd” to think of a universe with only light and no
atoms to emit or absorb it, apropos my previous comment.
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magnitude and direction by the expression

2(charge)2(time rate of change of acceleration)

3(velocity of light)3

when the particle is moving slowly. Wheeler and Feynman take up the
proposal of Tetrode to get two results: the above expression for radiation
reaction, and that the fields we are familiar with from experience are all
time retarded. For this, they give his idea the following definite formulation:

1. An accelerated point charge in otherwise charge-free space does not
radiate electromagnetic energy.

2. The fields which act on a given particle arise only from other particles.

3. These fields are represented by one-half the retarded plus one-half the
advanced Lienard-Wiechert solutions of Maxwell’s equations. This
law of force is symmetric with respect to past and future.∗ In connec-
tion with this assumption we may recall an inconclusive but illumi-
nating discussion carried on by Ritz and Einstein in 1909, in which
Ritz treats the limitation to retarded potentials as one of the foun-
dations of the second law of thermodynamics, while Einstein believes
that the irreversibility of radiation depends exclusively on considera-
tions of probability. Tetrode, himself, like Ritz, was willing to assume
elementary interactions which were not symmetric in time. However,
complete reversibility is assumed here because it is an essential ele-
ment in a unified theory of action at a distance. In proceeding on
the basis of this symmetrical law of interaction, we shall be testing
not only Tetrode’s idea of absorber reaction, but also Einstein’s view
that the one-sidedness of the force of radiative reaction is a purely
statistical phenomenon. This point leads to our final assumption:

4. Sufficiently many particles are present to absorb completely the radi-
ation given off by the source.

As mentioned in point 3, this is a theory of action at a distance, but not
the kind of instantaneous action at a distance envisaged by Newton for his
theory of gravitation. It is action propagated at a finite velocity, in this
case the velocity of light.

In this picture, the absorber is the cause of radiation. When the absorber
receives the photon, it moves, or more correctly accelerates. Therefore,

∗We now have some evidence (based on the decay of the neutral kaon particle) that the
fundamental laws of physics violate such time-reversal symmetry. One consequence of
this would be the existence of a permanent electric dipole moment (EDM) in an atom
or molecule, though none has been found so far. Therefore, EDM searches are among
the most important experiments in physics today.
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processes such as spontaneous emission and radiation reaction are caused
by the advanced field of this movement appearing at the source. The half-
advanced field is essential so that this cause appears at the exact instant of
radiation—the recoil felt by the atom is simultaneous with the emission of
the photon. If the retarded and advanced fields due to acceleration of the
source are Fret and Fadv respectively, then the total field emanating from
the source is

Fret

2
+

Fadv

2

Wheeler and Feynman show that the total field near the source due to all
the absorbers is

Fret

2
− Fadv

2

This field was called the “radiation field” by Dirac, and its form was as-
sumed by him in order to get the correct expression for the radiation reac-
tion. Now, we have an explanation for its origin. Moreover, the complete
field diverging from the source that would be felt by a test particle (which
is just the sum of the above two terms), is the full retarded field, as required
by experience.

We see that the above picture gives a self-consistent explanation of radiation.
To quote from the paper:

Our picture of the mechanism of radiation is seen to be self-consistent. Any particle on
being accelerated generates a field which is half-advanced and half-retarded. From the
source a disturbance travels outward into the surrounding absorbing medium and sets
into motion all the constituent particles. They generate a field which is equal to half the
retarded minus half the advanced field of the source. In this field we have the explanation
of the radiation field assumed by Dirac. The radiation field combines with the field of the
source itself to produce the usual retarded effects which we expect from observation, and
such retarded effects only. The radiation field also acts on the source itself to produce the
force of radiative reaction. What we have said of one particle holds for every particle in a
completely absorbing medium. All advanced fields are concealed by interference. Their
effects show up directly only in the force of radiative reaction. Otherwise we appear to
have a system of particles acting on each other via purely retarded forces.

Wheeler and Feynman next show that the irreversibility of radiation is not
due to electrodynamics itself but due to the statistical nature of absorp-
tion, à la Einstein. To understand this, it is enlightening to compare radia-
tion with heat conduction. Both processes convert ordered into disordered
motion although every elementary interaction involved is microscopically
reversible. In heat conduction, an initially hot body cools off with time be-
cause the probability for cooling is overwhelmingly greater than the chance
for it to grow hotter. Similarly, if we start with a charged particle whose
energy is large in comparison to the surrounding absorber particles, then
there is an overwhelming probability that the particle will lose energy to
the absorber (at a rate in close accord with the law of radiative damping).
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Take the classic example of the irreversible breaking of an egg. If we could
choose the initial conditions so that the millions of particles involved had
exactly the reverse of the motion acquired during breakage, we would see
an egg forming from its constituent pieces. It is just that the probability
of this happening is negligible.∗

The expression for the force of radiation reaction shows that it is propor-
tional to the first derivative of acceleration, or the third derivative of po-
sition. This means that a charge starts to move before the arrival of the
disturbance; and e2/mc3 seconds ahead of the time when it attains a veloc-
ity comparable with its final speed. This has been termed pre-acceleration.
Since the disturbance in this case is the advanced field of the absorber,
we have to give up the notion that the movement of a particle at a given
instant is completely determined by the motions of all other particles at ear-
lier moments. Pre-acceleration can be hence viewed as an influence of the
future on the past, i.e. the distinction between past and future is blurred
on time scales of the order of e2/mc3. In other words, those phenomena
which take place in times shorter than this figure require us to recognize the
complete interdependence of past and future in nature, an interdependence
due to an elementary law of interaction between particles which is perfectly
symmetrical between advanced and retarded fields.

The absorber picture of radiation seems “repugnant to our notions of causal-
ity,”† in the sense that we can (at least in principle) change the process of
emission by intervening suitably—by blocking the path from emitter to
absorber for example. Without bringing notions of human free will and
philosophical complications involving life, let us imagine a simple interven-
tion scheme where a shutter is designed to (automatically) block the path
of the photon halfway between the source and absorber. Does the photon
go back to the source and re-excite it because the path to the absorber is
now blocked? No. The correct solution, which comes out of the absorber
theory, is that the advanced field of the shutter tells the atom not to radiate
in the first place. That is why the advanced field is so important to this
theory, it gives a consistent solution irrespective of the distance between the
absorber and emitter—your eye and the light from a distant star millions
of light years away, for example.

The theory also gives a satisfactory explanation for the well-known phe-
nomenon of photonic bandgap. This is a system where a periodic array of
dielectric materials is used to create a bandgap for light—a situation where
the system does not allow the propagation of light waves with certain ener-
gies or wavelengths. This is akin to the bandgap for electrons in a crystal,
where the periodic array of nuclei creates a (Bragg-scattering) condition so

∗The phenomenon of “spin echo,” discussed in Chapter 8, “Coherence,” is an example of
such re-formation, which is induced by a pi-pulse that acts to reverse the randomization
of a collection of spins.

†G. N. Lewis, “The nature of light,” P. Natl. Acad. Sci. USA 12, 22–29 (1926).
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that certain electron waves cannot propagate. One can therefore suppress
spontaneous emission from an atom in the excited state by placing it within
a photonic-bandgap material, with a band gap in the correct range. This is
easily understood in the absorber picture as arising due to the fact that the
field of the absorber is not allowed to reach the atom. In the conventional
picture, this is explained by saying the bandgap material creates a “better
vacuum,” one where the vacuum modes are suppressed.

The above analysis shows that the process of emission is nonlocal—the
states of the emitter and absorber are coupled no matter how far apart they
are. Nonlocality is an inherent part of quantum mechanics, and John Bell
showed that it can be experimentally tested using what are now called Bell’s
inequalities. Most of these tests are done with entangled photons. And
experimenters try to enforce locality by changing the (polarization) state
of the detector while the photons are in flight. But the absorber picture
tells us that the emitting atom “knows” the final state of the detector in
advance. So there is no possibility of a “delayed choice”—a phrase coined
by Wheeler to indicate changes made after a particle has chosen one of
two paths in an interference experiment. The correct way to test quantum
nonlocality is to use entangled pieces of matter (two atoms dissociating
from a paired singlet state, for example), and not photons.

The one puzzle that remains in the above picture is the phenomenon of pair
creation, a process where a photon of suitable energy gets converted into
matter consisting of a particle and antiparticle pair. Here, suitable energy
means that it is at least equal to 2mc2, the total rest mass energy of the
pair. The theory of relativity tells us that matter and energy are equivalent:
the famous relation E = mc2, which gives the above requirement for the
minimum photon energy for pair production. But to say that a photon
(remember that it is a particle of interaction) can be converted into matter
seems absurd. Or to say that matter can be created out of pure energy. A
better solution is that the particle-antiparticle pair was always there, but in
a bound state that did not interact with other matter (or was “invisible”).
This state then absorbed a photon and disassociated into its constituent
pair. No matter is ever created or destroyed, just that a photon takes the
matter from being invisible to visible. Of course, this picture is valid only
if such a non-interacting state is shown to exist. Note that such a state is
different from the ground state of the well-known positronium atom formed
using an electron and a positron (anti-electron), which is like a hydrogen
atom but with the proton replaced by the positron. The positronium atom
can absorb photons of much smaller energy because it has excited states
that are analogous to the excited states of hydrogen.

I met Wheeler at a conference in his honor at the University of Maryland
in 1994. I asked him why the seemingly good theory of absorber interac-
tion was not widely accepted. He said that they (he and Feynman) felt
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the theory was incorrect because they had looked empirically for complete
absorption in all directions in the sky, and not found it. In their paper,
Wheeler and Feynman do discuss the consequences of incomplete absorp-
tion. The problems depend to a large extent on the model of the universe,
and the description of electromagnetism in curved spacetime. Anyway, I
think (in agreement with Lewis) that emission without absorption is not
possible, so there is no question of partial absorption. Certainly, the present
model of the photon and radiation has many puzzling features that make it
unsatisfactory. To paraphrase Einstein, perhaps we are deluding ourselves
into thinking that we know the photon.



Appendix C

Einstein as Armchair
Detective: The Case of
Stimulated Radiation

E
instein was in many ways like a detective on a mystery trail, though
in his case he was on the trail of nature’s mysteries and not some

murder mystery! And like all good detectives he had a style. It consisted
of taking facts that he knew were correct, and forcing nature into a situation
that would contradict this established truth. In this process she would be
forced to reveal some new truths. Einstein’s 1917 paper on the quantum
theory of radiation is a classic example of this style, and enabled him to
predict the existence of stimulated radiation starting from an analysis of
thermodynamic equilibrium between matter and radiation.

397
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Einstein is rightly regarded as one of the greatest scientific geniuses of all
time. Perhaps the most amazing and awe-inspiring feature of his work
was that he was an “armchair” scientist, not a scientist who spent long
hours in a darkened laboratory conducting delicate experiments, but one
who performed gedanken (thought) experiments while sitting in his favorite
chair that nevertheless advanced our understanding of nature by leaps and
bounds. Two of his greatest contributions are the special theory of rela-
tivity and the general theory of relativity, both abstract creations of his
remarkable intellect. They stand out as scientific revolutions that com-
pletely changed our perceptions of nature—of space and time in the case of
the special theory, and of gravity in the case of the general theory. It might
be argued that the special theory of relativity was necessitated by exper-
imental facts such as the constancy of the speed of light, but the general
theory was almost completely a product of Einstein’s imagination. For a
person to have achieved one revolution in his lifetime is great enough, but
two revolutions seems quite supernatural.

But is it really so magical? While it is certain that Einstein was a one-
of-a-kind genius, is it at least possible to understand the way in which his
mind tackled these problems? I think the answer is yes, because deep in-
side Einstein was like a detective hot on a mystery trail, of course not one
solving murder mysteries but one trying to unravel the mysteries of nature.
Any keen follower of murder mysteries knows that there are two types of
detectives: those who get down on their hands and knees looking for some
microscopic piece of clinching evidence at the scene of the crime, and the
second type of “armchair detectives” who seem to arrive at the solution
just by thinking logically about the possibilities. Einstein was most cer-
tainly of the second kind, and true to this breed, he had his own modus
operandi. In simple terms, his technique was to imagine nature in a situa-
tion where she contradicted established truths, and revealed new truths in
the process. As a case in point, we will look at Einstein’s 1917 paper∗ titled
“On the Quantum Theory of Radiation” where he predicted the existence
of stimulated emission. While Einstein will always be remembered for his
revolutionary relativity theories, his contributions to the early quantum
theory are certainly of the highest caliber, and the 1917 paper is a classic.

It is useful to first set the paper in its historical perspective. By the time
Einstein wrote this paper, he had already finished most of his work on the
relativity theories. He had earlier done his doctoral thesis on Brownian
motion and was a pioneer of what is now called statistical mechanics. He
was thus a master at using thermodynamic arguments. He was one of the
earliest scientists to accept Planck’s radiation law and its quantum hypoth-
esis. He had already used it in 1905 for his explanation of the photoelectric
effect. He was also aware of Bohr’s theory of atomic spectra and Bohr’s

∗English translation of the paper available in Sources of Quantum Mechanics, B. L. Van
Der Waerden, ed. (Dover, New York, 1968).
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model of the atom, which gave some explanation for why atoms emitted
radiation in discrete quanta. What he did not know in 1917 was any of
the formalism of quantum mechanics, no Schrödinger equation and not the
de Broglie hypothesis for wave nature of particles that we learn in high
school these days. Despite this, Einstein was successful in predicting many
new things in this paper.

Let us now see what Einstein’s strategy in this paper is. He is attempting
to understand the interaction between atoms and radiation from a quantum
mechanical perspective. For this, he imagines a situation where a gas of
atoms is in thermal equilibrium with radiation at a temperature T . The
temperature T determines both the Maxwell-Boltzmann velocity distribu-
tion of atoms and the radiation density ρ at different frequencies through
Planck’s law. He assumes that there are two quantum states of the atom
Zn and Zm, whose energies are εn and εm respectively, and which satisfy
the inequality εm > εn. The relative occupancy W of these states at a
temperature T depends on the Boltzmann factor as follows

Wn = pn exp(−εn/kBT )

Wm = pm exp(−εm/kBT )
(C.1)

where pn is a number, independent of T and characteristic of the atom and
its nth quantum state, called the degeneracy or “weight” of the particular
state. Similarly, pm is the weight of the mth state.

Einstein then makes the following basic hypotheses about the laws govern-
ing the absorption and emission of radiation.

1. Atoms in the upper state m make a transition to the lower state n
by spontaneous emission. The probability dW that such a transition
occurs in the time dt is given by

dW = An
mdt

Am
n in modern terminology is called the Einstein A coefficient. Since

this process is intrinsic to the system and is not driven by the radiation
field, it has no dependence on the radiation density.

2. Atoms in the lower state make a transition to the upper state by
absorbing radiation. The probability that such a transition occurs in
the time dt is given by

dW = Bm
n ρdt (C.2)

Bn
m is now called the Einstein B coefficient. The absorption process

is driven by the radiation field, therefore the probability is directly
proportional to the radiation density ρ at frequency ν.
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3. The two postulates above seem quite reasonable. Now comes his new
postulate, that there is a third process of radiative transition from the
upper state to the lower state, namely stimulated emission, driven by
the radiation field. By analogy with the probability for absorption,
the probability for stimulated emission is

dW = Bn
mρdt (C.3)

Einstein calls the processes in both 2 and 3 as “changes of state due to
irradiation.” We will see below how he is forced to include postulate 3 in
order to maintain thermodynamic equilibrium.

The main requirement of thermodynamic equilibrium is that the occupancy
of atomic levels given by Eq. (C.1) should not be disturbed by the ab-
sorption and emission processes postulated above. Therefore the number
of absorption processes (type 2) per unit time from state n into state m
should equal the number of emission processes (type 1 and 3 combined) out
of state m into state n. This is called detailed balance. Since the num-
ber of processes from a given state occurring in a time dt is given by the
occupancy of that state times the probability of a transition, the detailed
balance condition is written as

pn exp(−εn/kBT )B
m
n ρ = pm exp(−εm/kBT )(B

n
mρ+An

m) (C.4)

Notice the importance of the third hypothesis about stimulated emission
to make the equation consistent. If one does not put that in, the equation
becomes

pn exp(−εn/kBT )B
m
n ρ = pm exp(−εm/kBT )A

n
m

which clearly will not work. At high temperatures, when the Boltzmann
factor makes the occupancy of the two levels almost equal, the rate of ab-
sorption on the LHS increases with temperature as the radiation density
increases. But the rate of emission on the RHS does not increase because
spontaneous emission is independent of the radiation density. Thermody-
namic equilibrium will therefore not be maintained. This is vintage Ein-
stein: he imagines a situation that forces a contradiction with what he
“knows,” namely thermal equilibrium, and uses it to obtain a new result,
namely stimulated emission during radiative transfer.

With the grace and confidence of an Olympic hurdler, Einstein now moves
on to make quantitative predictions based on the bold new hypothesis.
First, he uses the high temperature limit to derive a relation between the
coefficients for absorption and stimulated emission. Under the reasonable
assumption that ρ → ∞ as T → ∞, the spontaneous emission term on
the RHS of Eq. (C.4) can be neglected at high temperatures. From this, it
follows that

pnB
m
n = pmBn

m
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By substituting this result in Eq. (C.4), Einstein obtains a new, simple
derivation of Planck’s law

ρ =
An

m/Bn
m

exp[(εm − εn)/kBT ]− 1

Notice that he will not get the correct form of this law if he did not have the
stimulated emission term in Eq. (C.4). Another reason for him to be confi-
dent that his three hypotheses about absorption and emission are correct.
He then compares the above expression for ρ with Wien’s displacement law

ρ = ν3f(ν/T )

to obtain

An
m

Bn
m

= αν3 and εm − εn = hν

with constants α and h. The second result is well known from the Bohr
theory of atomic spectra. Einstein is now completely sure that his three
hypotheses about radiation transfer are correct since he has been able to
derive both Planck’s law and Bohr’s principle based on these hypotheses.

Einstein does not stop here. He now considers how interaction with ra-
diation affects the atomic motion in order to see if he can predict new
features of the momentum transferred by radiation. Earlier he had ar-
gued that thermal equilibrium demands that the occupancy of the states
remain undisturbed by interaction with radiation. Now he argues that the
Maxwell-Boltzmann velocity distribution of the atoms should not be dis-
turbed by the interaction. In other words, the momentum transfer during
absorption and emission should result in the same statistical distribution
of velocities as obtained from collisions. From kinetic theory, we know that
the Maxwell velocity distribution results in an average kinetic energy along
each direction given by

1

2
M

〈
v2

〉
=

1

2
kBT (C.5)

This result should remain unchanged by the interaction with radiation.

To calculate the momentum change during radiative transfer, Einstein brings
into play his tremendous insight into Brownian motion. As is now well
known from the Langevin equation, he argues that the momentum of the
atom undergoes two types of changes during a short time interval τ . One
is a frictional or damping force arising from the radiation pressure that sys-
tematically opposes the motion. The second is a fluctuating term arising
from the random nature of the absorption-emission process. It is well known
from Brownian motion theory that the atoms would come to rest from the
damping force if the fluctuating term were not present. Thus, if the initial
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momentum of the atom is Mv, then after a time τ , the momentum will
have the value

Mv −Rvτ +Δ

where the second term is the damping term and the last term is the fluctu-
ating term. If the velocity distribution of the atoms at temperature T is to
remain unchanged by this momentum transfer process, the average of the
above quantity must be equal to Mv, and the mean values of the squares
of these quantities must also be equal〈

(Mv −Rvτ +Δ)2
〉
=

〈
(Mv)2

〉
Since we are only interested in the systematic effect of v on the momentum
change due to interaction with radiation, v and Δ can be regarded as inde-
pendent statistical processes and the average of the cross term vΔ can be
neglected. This yields〈

Δ2
〉
= 2RM

〈
v2

〉
τ

To maintain consistency with kinetic theory, the value of
〈
v2

〉
in the above

equation must be the same as the one obtained from Eq. (C.5). Thus〈
Δ2

〉
τ

= 2RkBT (C.6)

This is the equation that will tell Einstein if his hypotheses about momen-
tum transfer are correct. In other words, he assumes that the radiation
density is given by Planck’s law, and calculates R and

〈
Δ2

〉
based on some

hypotheses about momentum transfer during radiative processes. If the
hypotheses are valid, the above equation should be satisfied identically in
order not to contradict thermal equilibrium.

His main hypothesis about momentum transfer is that, if the photon be-
haves like a localized packet of energy E, it must also carry directional
momentum of E/c. Without going into the details, I just outline the ap-
proach he uses for calculating R and

〈
Δ2

〉
. For calculating R, he uses the

following argument. In the laboratory frame in which the atom has a ve-
locity v, the radiation is isotropic. But in the rest frame of the atom, the
radiation is anisotropic because of the Doppler shift. This gives rise to a
velocity-dependent radiation density and a velocity-dependent probability
of absorption and stimulated emission [from Eqs. (C.2) and (C.3)]. The
average momentum transferred to the atom is calculated from the modi-
fied rates of absorption stimulated emission, thus yielding R. R does not
depend on the rate of spontaneous emission because spontaneous emission
occurs independently of the radiation field and is therefore isotropic in the
rest frame of the atom. Calculating

〈
Δ2

〉
is relatively simpler. If each ab-

sorption or emission process gives a momentum kick of E/c in a random
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direction, the mean square momentum after � kicks is simply �×(E/c)2. � is
equal to twice the number of absorption processes taking place in the time
τ since each absorption process is followed by an emission process. Using
this approach, Einstein calculates R and

〈
Δ2

〉
. He shows that Eq. (C.6) is

satisfied identically when these values are substituted, which implies that
the velocity distribution from kinetic theory is not disturbed if and only
if momentum exchange with radiation occurs in units of E/c in a definite
direction.

He thus concludes the paper with the following observations. There must
be three processes for radiative transfer, namely absorption, spontaneous
emission, and stimulated emission. Each of these interactions is quan-
tized and takes place by interaction with a single radiation bundle. The
radiation bundle (which we today call a photon) carries not only energy of
hν but also momentum of hν/c in a well defined direction. The momentum
transferred to the atom is in the direction of propagation for absorption
and in the opposite direction for emission. And finally, ever loyal to his
dislike for randomness in physical laws (“God does not play dice . . . !”), he
concludes that one weakness of the theory is that it leaves the duration
and direction of the spontaneous emission process to “chance.” However,
he is quick to point out that the results obtained are still reliable and the
randomness is only a defect of the “present state of the theory.”

What far reaching conclusions starting from an analysis of simple thermody-
namic equilibrium. This is a truly great paper in which we see two totally
new predictions. First, he predicts the existence of stimulated emission.
And to top that, for the first time, he shows that each light quantum car-
ries discrete momentum, in addition to discrete energy. He shows that the
directional momentum is present even in the case of spontaneous emission.
Thus an atom cannot decay by emitting “outgoing radiation in the form of
spherical waves” with no momentum recoil.

Today his conclusions about momentum transfer during absorption and
emission of radiation have been abundantly verified. Equally well verified
is his prediction of stimulated emission of radiation. Stimulated emission is
the mechanism responsible for operation of the laser, which is used in every-
thing from home computers and CD players to long-distance communica-
tion systems. Stimulated emission, or more correctly stimulated scattering,
underlies our understanding of the phenomenon of Bose–Einstein conden-
sation. It plays an important role in the explanation of superconductivity
and superfluidity. The two predictions, momentum transfer from photons
and stimulated emission, are particularly close to my heart because they
play a fundamental role in one of my areas of research, namely laser cool-
ing of atoms. In laser cooling, momentum transfer from laser photons is
used to cool atoms to very low temperatures of a few millionths of a degree
above absolute zero. Perhaps fittingly, it is the randomness or “chance” as-
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sociated with the spontaneous emission process (which he disliked so much)
that is responsible for the entropy loss associated with cooling. In other
words, as the randomness from the atomic motion gets reduced by cooling,
it gets added to the randomness in the radiation field through the sponta-
neous emission process, thus maintaining consistency with the second law
of thermodynamics.

In conclusion, we have seen how Einstein was able to use the principle
of thermodynamic equilibrium to imagine a situation where radiation and
matter were in dynamical equilibrium and from that predict new features
of the radiative transfer process. As mentioned before, this was a recurring
theme in his work, a kind of modus operandi for the great “detective.” In
his later writings, he said that he always sought one fundamental governing
principle from which he could derive results through these kind of argu-
ments. He found such a principle for thermodynamics, namely the second
law of thermodynamics, which states that it is impossible to build a per-
petual motion machine. He showed that the second law was a necessary
and sufficient condition for deriving all the results of thermodynamics. His
quest in the last four decades of his life was to geometrize all forces of na-
ture. In this quest, he felt that he had indeed found the one principle that
would allow him to do this uniquely, and this was the principle of relativity

the laws of physics must look the same to all observers no
matter what their state of motion.

He had already used this principle to geometrize gravity in the general
theory of relativity. His attempts at geometrizing electromagnetic forces
remained an unfulfilled dream.
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Examples of gedanken experiments

We present two examples of gedanken experiments that illustrate the Ein-
stein technique for arriving at new results. Both of these experiments yield
results associated with the general theory of relativity, but are so simple
and elegant that they can be understood without any knowledge of the
complex mathematical apparatus needed for the general theory. The first
experiment is due to Einstein himself, while the second is due to Hermann
Bondi.

(i) Need for curved spacetime for gravity

This is a thought experiment devised by Einstein to arrive at the conclusion
that the general theory of relativity is an extension of the special theory
which requires curved spacetime, or spacetime in which the rules of plane
(Euclidean) geometry do not apply. The “known” facts are the results of spe-
cial theory of relativity applicable to inertial systems, and the equivalence
principle which states that inertial mass is exactly equal to gravitational
mass. Einstein’s argument proceeds as follows.

Figure C.1: Coordinate systems with relative rotation between them.

Imagine two observers or coordinate systems O and O′. Let the z′ axis of
O′ coincide with the z axis of O, and let the system O′ rotate about the z
axis of O with a constant angular velocity, as shown in Fig. C.1. Thus O
is an inertial system where the laws of special relativity apply, while O′ is
a non-inertial system. Imagine a circle drawn about the origin in the x′–y′

plane of O′ with some given diameter. Imagine, further, that we have a
large number of rigid rods, all identical to each other. We lay these rods in
series along the circumference and the diameter of the circle, at rest with
respect to O′. If the number of rods along the circumference is U and the
number of rods along the diameter is D, then, if O′ does not rotate with
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respect to O, we have (from plane geometry)

U

D
= π

However, if O′ rotates, we get a different result. We know from special rel-
ativity that, relative to O, the rods on the circumference undergo Lorentz
contraction while the rods along the diameter do not undergo this contrac-
tion (the relative motion is perpendicular to the diameter). Therefore, we
are led to the unavoidable conclusion that

U

D
> π

i.e. the laws of configuration of rigid bodies with respect to O′ are not in
accordance with plane geometry. If, further, we place two identical clocks,
at rest with respect to O′, one at the periphery and one at the center of
the circle, then with respect to O the clock at the periphery will go slower
than the clock at the center from special relativity. A similar conclusion
will be reached by O′, i.e. the two clocks go at different rates.

We thus see that space and time cannot be defined with respect to O′ as
they were defined in special theory of relativity for inertial systems. But,
according to the equivalence principle, O′ can also be considered a system
at rest with respect to which there is a gravitational field (corresponding to
the centrifugal force field and the Coriolis force field). We therefore arrive
at the following remarkable result: the gravitational field influences and
even determines the geometry of the space-time continuum, and this geom-
etry is not Euclidean. From this conclusion, Einstein goes on to develop a
curved spacetime theory of gravitation.
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(ii) Gravitational redshift

This example illustrates the use of a thought experiment to calculate the
difference in rates between two clocks placed at different gravitational po-
tentials, called the gravitational redshift. We have already seen in the first
example how the rate of the clock at the periphery differs from the rate of
the clock at the center. Here, we derive a quantitative value for this differ-
ence using an Einstein-like gedanken experiment, first conceived by Bondi.
The “known” things are the second law of thermodynamics and the special
relativistic energy-mass relationship, E = mc2. The argument proceeds as
follows.

Figure C.2: Bondi’s perpetual motion machine. The buckets on the right
side contain atoms that have higher energy and are thus heavier than
the atoms on the left side. When a bucket reaches the bottom, the atom
inside emits a photon which is absorbed by the corresponding atom in
the top bucket. The heavier buckets on the right keep falling down in
the gravitational field and their gravitational energy can be converted to
useful work. The resolution to the paradox is that the photon absorbed
at the top has a lower frequency than the photon emitted at the bottom.

Imagine a series of buckets on a frictionless pulley system, as shown in
Fig. C.2. Each bucket contains an atom capable of absorbing or emitting
a photon of energy hν. The system is in a uniform gravitational field with
acceleration g. If the photon frequency were unaffected by the gravitational
field, we can operate the system as a perpetual motion machine in the
following way. Imagine that the pulleys rotate clockwise and that all the
atoms on the left are in the ground state and the atoms on the right are
in the excited state. The lifetime in the excited state is such that, on
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average, every time a bucket reaches the bottom the atom inside decays to
the ground state and emits a photon. Suitable reflectors direct this photon
to the corresponding bucket at the top so that the atom inside absorbs
the photon and goes into the excited state. All the excited state atoms on
the right have more energy and, from the relation E = mc2, are therefore
heavier by an amount Δm = hν/c2. The heavier masses are accelerated
down by the gravitational field and the system remains in perpetual motion.
The excess gravitational potential energy can be converted to unlimited
useful work, in violation of the second law of thermodynamics.

The solution to the paradox lies in postulating that the frequency of the
photon emitted by the atom at the bottom is not the same as the frequency
of the photon when it reaches the top. Let the two frequencies be ν and
ν′ respectively. Then the additional mass for the atom at the top by ab-
sorbing a photon of frequency ν′ is hν′/c2, and the potential energy of this
excess mass at a height H between the two buckets is hν′/c2 × gH . To
maintain consistency with the second law of thermodynamics, this excess
energy should exactly compensate for the loss in energy of the photon as
its frequency changes from ν to ν′

hν′

c2
gH = h(ν − ν′)

which yields

ν′ − ν

ν′
= −gH

c2

i.e. the relative frequency shift is given by gH/c2 and is negative (redshift)
at the location where the gravitational potential is higher. The shift can
be understood from the fact that the photon is also affected by the gravita-
tional field and therefore loses energy as it climbs up the potential. Since
the photon always travels at the speed c, it loses energy by changing its
frequency. This result explains why, in the first example, the clock at the
center goes slower than the clock in the periphery according to O′. With
respect to O′, there is a gravitational field (corresponding to the centrifugal
force) pointing away from the center. The clock at the center is at a higher
gravitational potential and hence goes slower.

The gravitational redshift on the surface of the earth is very tiny at any
reasonable height, but it was experimentally verified in a remarkable exper-
iment by Pound and Rebka in 1959. They measured the frequency shift of
a recoilless Mössbauer transition between the top and bottom of a building
at Harvard University, a height difference of about 25 m. The relative fre-
quency shift measured was a tiny 3 parts in 1014, consistent with the above
calculation!
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Frequency Comb

I
n recent times, one atomic transition that has inspired many advances
in high resolution spectroscopy and optical frequency measurements is

the 1S → 2S resonance in hydrogen, with a natural linewidth of only 1
Hz. Measurement of the frequency of this transition is important as a
test of QED and for the measurement of fundamental constants. However,
the wavelength of this transition is 121 nm, corresponding to a frequency
of 2.5 × 1015 Hz. Since the SI unit of time is defined in terms of the
cesium radio frequency transition at 9.2 × 109 Hz, measuring the optical
frequency with reference to the atomic clock requires spanning six orders of
magnitude! You can think of this as having two shafts whose rotation speeds
differ by a factor of one million, and you need to measure the ratio of their
speeds accurately. If we use a belt arrangement to couple the two shafts,
then there is a possibility of errors in the ratio measurement due to phase
slip. Instead, one would like to couple them through a gearbox mechanism
with the correct teeth ratio so that there is no possibility of slip. The
idea is shown schematically in Fig. D.1, and is precisely what is achieved
by the frequency comb. This measurement technique was pioneered by
John Hall of the National Institute of Standards and Technology (NIST) in
Boulder, Colorado, USA, and Theodor Hänsch of the Max-Planck Institute
for Quantum Optics in Garching, Germany. They shared the 2005 Nobel
Prize in physics for this work.

409
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Figure D.1: Schematic of a gearbox mechanism to couple radio frequen-
cies to optical frequencies. The span of 6 orders of magnitude is what is
achieved by the frequency comb.

The basic idea of the comb technique, shown in Fig. D.2, is that periodic-
ity in time implies periodicity in frequency through the Fourier transform.
Thus, if you take a pulsed laser that produces a series of pulses that are
uniformly spaced in time (corresponding to a fixed repetition rate), then
the frequency spectrum of the laser will consist of a set of uniformly spaced
peaks on either side of a central peak. The central peak is at the optical
frequency of each laser pulse (carrier frequency), and the peaks on either
side are spaced by the inverse of the repetition period (sidebands), i.e. if
the repetition period is τr then the sideband spacing is Δ = 1/τr.

Figure D.2: Periodicity in time implies periodicity in frequency through
the Fourier transform. The spacing Δ in frequency domain is the inverse
of the repetition period τr in time domain.



Frequency comb 411

You can produce such a spectrum by putting the laser through a nonlinear
medium such as a nonlinear fiber. The larger the nonlinearity, the more
the number of sidebands. Around the year 1999, there was a major devel-
opment in making nonlinear fibers; fibers with honeycomb microstructure
were developed which had such extreme nonlinearity that the sidebands
spanned almost an octave. If you sent a pulsed laser (operating near 800
nm) through such a fiber, you would get a near continuum of sidebands
spanning the entire visible spectrum. The series of uniformly spaced peaks
stretching out over a large frequency range looks like the teeth of a comb,
hence the name optical frequency comb. The beautiful part of the tech-
nique is that the comb spacing is determined solely by the repetition rate,
thus by referencing the repetition rate to a cesium atomic clock, the comb
spacing can be determined as precisely as possible. In 1999, Hänsch and
coworkers showed that the comb spacing was uniform to 3 parts in 1017,
even far out into the wings.

Thus the procedure to produce a frequency comb is now quite straightfor-
ward. One starts with a mode-locked pulsed Ti-sapphire laser and sends its
output through 20–30 cm of nonlinear fiber. The pulse repetition rate is ref-
erenced to an atomic clock, and determines the comb spacing. The carrier
frequency is controlled independently, and determines the comb position.
But how does one measure an optical frequency using this comb? This can
be done in two ways. One way is to use a reference transition whose fre-
quency f◦ is previously known. We now adjust the comb spacing Δ so that
the reference frequency f◦ lies on one peak, and the unknown frequency f
lies on another peak that is n comb lines away, i.e. f = f◦ + nΔ.∗ Thus by
measuring n, the number of comb lines in between, and using our knowledge
of f◦ and Δ, we can determine f . This was the method used by Hänsch in
1999 to determine the frequency of the D1 line in cesium (at 895 nm). The
measurement of this frequency can be related to the fine structure constant
α, which is one of the most important constants in physics because it sets
the scale for electromagnetic interactions and is a fundamental parameter
in QED calculations.

However, the above method requires that we already know some optical
frequency f◦. If we want to determine the absolute value of f solely in
terms of the atomic clock, the scheme is slightly more complicated. In
effect, we take two multiples (or harmonics) of the laser frequency, and use
the uniform comb lines as a precise ruler to span this frequency difference.
Let us say we align one peak to 3.5f , and another peak that is n comb lines
away to 4f , then we have determined

4f − 3.5f = nΔ =⇒ f = 2nΔ

∗It is not necessary that the comb peak aligns perfectly with the laser frequency. A
small difference between the two can be measured easily since the beat signal will be
at a sufficiently low frequency.
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so that we have f in terms of the comb spacing. In 2000, Hänsch and
coworkers used this method to determine the frequency of the 1S → 2S
resonance in hydrogen with an unprecedented accuracy of 13 digits. This
was the first time that a frequency comb was used to link a radio frequency
to an optical frequency.

Currently, one of the most important questions in physics is whether funda-
mental constants of nature are really constant, or are changing with time.
For example, is the fine structure constant α constant throughout the life
of the universe, or is it different in different epochs? Now, if you want to
measure a very small rate of change α̇ (= dα/dt), then you can do it in
two ways. You can take a large dt so that the integrated change in α is
very large. This is what is done in astronomy, where looking at the light
from a distant star is like looking back millions of years in time. You can
then compare atomic spectra from distant stars to spectra taken in the lab-
oratory today. Alternately, if you want to do a laboratory experiment to
determine α̇, then you have no choice but to use a small dt. Therefore, you
have to improve the accuracy of measuring α so that even small changes
become measurable. This is what has been done by Hänsch and his group.
By measuring the 1S → 2S resonance in hydrogen over a few years, they
have been able to put a limit on the variation of α. Similar limits have been
put by other groups using frequency comb measurements of other optical
transitions. The current limit (as of 2014) on α̇/α from both astronomy
and atomic physics measurements is about 10−15 per year.

In the last few years, several optical transitions have been measured using
frequency combs. The primary motivation is to find a suitable candidate
for an optical clock to replace the microwave transition used in the current
definition. An optical clock will “tick” a million times faster, and will be
inherently more accurate. However, since the cesium atomic clock has an
accuracy of 10−15, one has to measure the candidate optical transition to
this accuracy to make sure it is consistent with the current definition. The
race is on to find the best candidate among several alternatives such as laser-
cooled single ions in a trap, ultracold neutral atoms in an optical lattice,
or molecules. The applications for more precise clocks of the future range
from telecommunications and satellite navigation to fundamental physics
issues such as measurement of pulsar periods, tests of general relativity, and
variation of physical constants.

Let me conclude this piece with a personal anecdote. I attended a small
reception in honor of John Hall after he won the Nobel Prize. In his speech,
he mentioned that the thing he enjoyed most about being at NIST was that
the management allowed him complete freedom to play with the latest “toys
and gadgets,” pleasures that he has carried from his childhood. I remember
that, as a child, I too was fascinated by mechanical and electrical gadgets,
and the precision with which they were engineered. I think many of us
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take to experimental research precisely for this reason, that it allows us to
take our childhood pleasures of playing with toys into adulthood, and even
make a living out of this enjoyment!
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